Carrier generation using pulse width modulation

Frederick Herbert Raab
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
Part of the Electrical and Electronics Commons

Recommended Citation

Raab, Frederick Herbert, "Carrier generation using pulse width modulation " (1972). Retrospective Theses and Dissertations. 5226.
https://lib.dr.iastate.edu/rtd/5226

INFORMATION TO USERS

This dissertation was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.
3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and $t \rho$ continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again - beginning below the first row and continuing on until complete.
4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.

University Microfilms

300 North Zeeb Road
Ann Arbor, Michigan 48106
A Xerox Education Company
Carrjer generation usingpulse width modulation
by
Frederick Herbert Raab
A Dissertation Submitted to the
Graduate Faculty in Partial Fulfillment of
The Requirements of the Dearee ofDOCTOR OF PHILOSOPHY
Major Suoject: Electrical Engineering
Approved:
Signature was redacted for privacy.
In Charge of Major Work
Signature was redacted for privacy.
For the Major Department
Signature was redacted for privacy.
For the Graduate College
Iowa State University Ames, Iowa

PLEASE NOTE:

Some pages may have
indistinct print.
Filmed as received.

University Microfilms, A Xerox Education Company

TABLE OF CONTENTS
Page
I. INTRODUCTMON 1
II. TYPES AND EFFICIENCIES OF AMPLIFIERS 8
A. Conventional Amplifiers 8
B. Switching Amplifiers 17
III. BASTC EMPLEMENTATION 34
IV. BASIC SPECTRAY ANALYSIS 46
V. BASTC SFECTRUM OF A CIASS D RF AMPLIFIER 54
A. Bipolar Prm 55
B. Monopolar FWM 67
c. Saturation Voltage 73
VI. PULSE TIMMTNG DISTORTION 80
A. Pulse Bias Distortion 81
E. Rise/Fall rime Distortion 89
C. Approximations Used 97
D. Combination of Effects 98
VII. SPURIOUS PRODUCTS NITH STNUSOTDAE MODULATION 100
A. Voltage Error Products 103
B. Timing Error Products 109
VIII. SPURIOUS PRODUCTS FOR GENERAL CASE 116
IX. DISTORTION REDUCTION EY USE OF FEEDBACK 130
X. COMMENTS AND CONCLUSIONS 144
XI. REFERENCES 147
A. Additional References 149
Page
XII. ACKNOWLEDGEMENT 149
XIII. APPENDIX I: OTHER AMPLIFIERS 151
A. Class B 151
B. Conventional Pulse Width Modulation 159
C. Other Amplifiers 173
XIV. APPENDIX II: PROTOTYPE 175
XV. APPENDIX III: STMULATION 186
XVI. APPENDIX IV: COMMONLY-USED SYMBOLS 211

LTST OF ILLUSTRATIONS

Page
Figure I. 1 Light Dimmer 2
Figure 1.2 Types of Pulse Width Modulation 4
Figure 2.1 Class A Amplifier 9
Figure 2.2 Class B Amplifier 12
Figure 2.3 Class C Amplifier 14
Figure 2.4 Class CD Amplifier 14
Figure 2.5 Efficiencies of Class A, B, and C 16 Amplifiers
Figure 2.6 Switching Amplifier 18
Figure 2.7 Class AD Amplifier 20
Figure 2.8 Rise/Fall Times in a Class AD Amplifier 22
Figure 2.9 Saturation Voltages in a Class AD Amplifiex 24
Figure 2.10 Efficiency of Class $A D$ and $B D$ Amplifier 25
Figure 2.11 Class BD Amplifier 27
Figure 2.12 Class D RF Amplifier 28
Figure 2.13 Efficiency of a Class D RF Amplifier 32
Figure 3.1 Comparator Pulse Generation for Class AD 35
Figure 3.2 Relationships Between Modulating Signal 35 and Pulse Width
Figure 3.3 Waveforms in Class D AM System 36
Figure 3.4 Class D AM Transmitter 38
Figure 3.5 Generation of AM and DSB/SC 39
Figure 3.6 Class D SSB Techniques 41
Figure 3.7 SSB Generation 42
Figure 3.8 Class D SSB Generation Using Kahn's Method 43
Page
Figure 4.1 Monopolar Pulse $\mathrm{f}_{+}(\theta)$ 49
Figure 4.2 Decomposition of Bipolar Pulse 50
Figure 4.3 Ramp Waveform 52
Figure 4.4 Triangular Wave $\lambda(\theta)$ 53
Figure 5.1 Modulating Function for DSB/SC 58
Figure 5.2 Spectrum of a Class D RF Amplifier 61
Figure 5.3 Spectrum of a Class D RF Amplifier 62
Figure 5.4 Locus of $\mathrm{E}(\theta)$ and $\varphi(\theta)$ 67
Figure 5.5 Spectrum of a Class D RF Amplifier 68
Figure 5.6 Spectrum of a Class D RF Amplifier 69
Figure 5.7 Waveform with Voltage Error 71
Figure 5.8 Modulation of Even Harmonics for $D S B / S C$ 72
Figure 5.9 Spectrum of a Class D RF Amplifier 74
Figure 5.10 Spectrum of a Class D RF Amplifier 75
Figure 5.11 Saturation Voltage Effects 76
Figure 5.12 Saturation Effect Approximations 77
Figure 5.13 Spurious products due to non-zero 78 Saturation Voltage
Figure 5.14 Circuit Changes to Reduce Saturation 78 Voltage Spuricus Products
Figure 6.1 Cause of Pulse Bias 81
Figure 6.2 Bias Distortion Waveform 82
Figure 6.3 Modulation Functions for Timing Distortion 86
Figure 6.4 Types of Spurious Products due to Pulse 88
Figure 6.5 Spectrum of a Class D RF Amplifier 90

Page

Figure 6.6 Spectrum of a Class D RF Amplifier 91
Figure 6.7 Rise/Fall Time Distortion Waveform 92
Figure 6.8 Spectrum of a Class D RF Amplifier 95
Figure 6.9 Spectrum of a Class D RF Amplifier 96
Figure 6.10 Distortion Curves 98
Figure 6.11 Pulse Deterioration 99
Figure 7.1 Waveforms Used to Find Upper Limits on 102 Spurious Products
Figure 7.2 Spurious Products at a Given Frequency 106
Figure 7.3 Maximum Spurious Products for Monopolar 108 DSB/SC
Figure 7.4 Maximum Spurious Products for Bipolar 112 DSB/SC with Various Timing Errors
Figure 7.5 Naximum Spurious products for Pipolar AM- 11.4 Jike Signal with Various Timing Errors
Figure 8.1 Variation of Spurious Products with Depth 120 of Modulation
121
Figure 8:2 Spectrum of a Class D RF Amplifier
122
Figure 8:3 Spectrum of a Class D RF Amplifier
123
Figure 8.4 Spectrum of a class D RF Amplifier
124
Figure 8.5 Spectrum of a Class D RF Amplifier
Figure 8.6 Spectrum of a Class D RF Amplifier 127
Figure 8.7 Spectrum of a Class D RF Amplifier 128
Figure 9.1 Feedback System 131
Figure 9.2 Feedback System with $\sigma / 2 \pi=0$ 138
Figure 9.3 Feedback System with $\sigma / 2 \pi=0.001$ 139
Figure 9.4 Feedback System with $\sigma / 2 \pi=0.01$ 140

Page

Figure 9.5 Feedback System with $\sigma / 2 \pi=0.1$ 14.1
Figure 9.6 Envelope and Phase Feedback System 143
Figure 13.1 Transfer Characteristic for Class B 152 Amplifier
Figure 13.2 Waveform in a class B Amplifier 153
Figure 13.3 Spectrum of a Class B Amplifier 154
Figure 13.4 Spectrum of a Class B Amplifier 256
Figure 13.5 Spectrum of a Class B Amplifier 157
Figure 13.6 Spectrum of a Class B Amplifier 158
Figure 13.7 Spectrum of Conventional PWM 161
Figure 13.8 Spectrum of a Class AD Amplifier 163
Figure 13.9 Spectrum of a Class AD Amplifier 164
Figure 13.10 Spectrum of a Class AD Amplifier 165
Figure 13.11 Spectrum of a Class BD Amplifier 166
Figure 13.12 Spectrum of a Class AD Amplifier 167
Figure 13.13 Spectrum of a Class AD Amplifier 170
Figure 13.14 Pulse Bias in Class BD Amplifier 171
Figure 13.15 Spectrum of a Class AD Amplifier 172
Figure 14.1 Fower Supply 177
Figure 14.2 Audio Amplifier and RF Oscillator 178
Figure 14.3 Reference Generator and Detector 179
Figure 14.4 Clipper and Comparator 180
Figure 14.5 Logic 181
Figure 14.6 Power Amplifier 182
Figure 14.7 Pulse Train and Output Waveform 184

viii

Page
Figure 14.8 Envelope 184
Figure 14.9 Spectrum of Bipolar PWM 185
Figure 14.10 Spectrum of Monopolar PWM 185.
Figure 15.1 Arrays Used in Simulation 188
Figure 15.2 Exponential Mode 189
Figure 15.3 Methods of Iteration 191
Figure 15.4 Computer Errors in Square-Wave Spectrum 192

I. INTRODUCTION

Since the demise of the sparlr-gap and the advent of the vacuum tube, RF amplifiers have been plagued by inefficiency. Recently, pulse widih modulation (also called class D, class S, switched-mode, pulse duration modulation, PWM, or PDM) has offered a means of making an efficient audio amplifier by extracting the DC component and its modulation from a train of pulses of varying width. By extracting the fundamental component of a pulse train, this technique can be extended to make efficient $\mathbb{R F}$ amplifiers.

In conventional class A, B, and C amplifiers, a non-zero voltage and non-zero current are present simultaneously on the output device, causing it to dissipate power, resulting in inefficiency. In a class D amplifier, however, the current is zero whenever the voltage is non-zero, and the voltage is zero whenever the current is non-zero. Thus no power is dissipated (ideally) in the device, and it is (ideally) completely efficient.

To visualize this, consider two types of light dimmer circuits (Figure 1.1). The first type (class A) uses a series resistor to reduce the power in the light. However, the resistor has both non-zero voltage and non-zero current, so it consumes power, and the efficiency of the dimmer is low. The second type (class D) uses a switch in series with the light. When the switch is open, no current flows, and no

(a) Class A

(c) Class D

(b) Switch Open

(d) Switch Closed

Figure 1.1. Light Dimmer.
power is dissipated in either the light or the switch. When the switch is closed, the light glows at full power, but there is no voltage across the switch, hence it dissipates no power. If the switch position is changed so that it is closed a sertain fraction of the time, any average brightness less than the full brightness can be obtained. The switch, however, does not dissipate power, hence the dimmer is completely efficient. If switching is fast enough, the residual heat of the light's filament will make the switching effect unnoticeable.

Class D amplification of audio signals works in essentially the same way as does the light dimmer just described. The switching rate is several times higher than the highest audio frequency to be amplified. The switching frequency and higher harmonics are removed by the low pass action of the
loudspeaker and/or an additional low pass filter between the switch and the load. Several refexences on audio type PWM are.given in Chapter XI.

The audio technique can be applied to the generation of a radio frequency signal. Experimental prototypes operating at 2 MHz have been built by Brian Attwood of Mullard (1). However, the conventional PWM technique has two disadvantages when used for generation of radio-frequency signals. First, the switching frequency must be several times the carrier frequency, which can make it very high for most RF signals. Secondly, spurious products generated by inherent modulation of the switching frequency and its harmonics occur throughout the RF spectrum, including frequencies near the desired signal.

By switching at the carrier frequency and extracting the fundamental compoment, the switching rate can be reduced (Figure 1.2). In actual amplifiers, pulse rise times are not instantaneous, and some power is dissipated with every transition. Thus the lower the switching rate, the higher the efficiency. Amplifiers based on this principle have been built by Rose (2); Page, Hindson, and Chudobiak (3); and osborne (4). However, these amplifiers produce a carrier of constant amplitude, and modulation is introduced only by varying the collector voltage by external modulator. This type of Class D amplification is also under investigation as a means of reducing intermodulation distortion arising from two transmitters using the same antenna (5).

OUTPUT
SIGHAL

Figure 1.2: Types of Pulse Width Modulation.

If the widths of the puises in such an amplifier are varied, the magnitude of the fundamental component (carrier) is aiso varied. Since the magnitude of the fundamental component varies as the sine of the pulse width, it is necessary to predistort the pulse width according to the inverse sine (arcsin) of the modulating signal. An amplifier based on this principle was apparently first invented by Phillip Bessiich (6).

In addition to the advantages of a slower switching rate, spurious products inherent in this type of amplifier are limited (ideally) to finite bands around the odd harmon-
ics of the carrier frequency. Thus the spurious products are far removed from the carrier frequency, and are easily removed by a simple tuned circuit.

The terminology used to describe this amplifier is somewhat confusing. The first question is whether it should be called an amplifier or a modulator. When generating an amplitude modulated signal, the actual modulated carrier need not appear until after the output filter, in which case the circuit is a modulator. However, when generating single sideband signals, it appears easier to produce a low level SSB signal, detect the envelope and phase, and vary the pulse width and position accordingly; in this case, the circuit is an amplifier. Thus it appears that it can be either, depending on use. Because of the connotation of amplifier as a device to produce the signal output, rather than to impress information upon a signal, it will be called an amplifier in this dissertation. There is also a temptation to call it class E, to distinquish it from the version of a switching amplifier used to generate audio signals. Unfortunately, the term class \underline{D} has already been applied to the constant carrier circuits.

There are two major advantages to the use of PWM. The first is the increase in output power, and the associated decrease in input power and dissipated power. The use of the increased output power is obvious. Probably more significant is the decrease in power dissipated by the amplifying device;
the heat sink problem is greatly reduced, and much smaller transistors can be used. For example, consider a 100 Watt class B transmitter. A typical efficiency might be 50\%, in which case 50 watts would be dissipated in the final amplifying transistors. If class D were used; a typical efficiency might be 90%, in which case only 10 Watts would be dissipated.

The second advantage is that of stability. Linear transistors need to be compensated for changes of gain with temperature. In the case of the 75 Watt linear RF transistor (2N6093), a typical circuit to regulate the Q-point (7)s (8) involves four additional transistors and the circuitry associated with them. Pulse amplifiers need only be biased off well enough to stay off at the highest temperature, and driven hard enough to saturate at the lowest temperature.

The disadvantage of PWM is, of course, that transistors with higher cut-off frequencies are required. However, jecause much smaller power levels are required, the disade vantage may be offset. It is doubtful that class D will have much application to vacuum tube amplifiers, since the power consumed in the filament of a vacuum tube makes it an inherently inefficient device. Class D may be the most feasible way to extend solid state circuits to high power and high frequency operation.

An actual PWM amplifier will not have perfect timing of the pulse transitions, nor will the rise and fall times be
instantaneous; both of these cause an intermodulation distortion effect. Differences in the positive and negative supply voltages can introduce even harmonics of the carrier, and infinite bandwidth spurious products associated with them. Non-zero saturation voltages also contribute unwanted signals. However, a feedback system can be used to eliminate some of the distortion.

The usefulness of this type of amplifier will depend on knowledge of both its potential and limitations. The determination of some of the capabilities and limitations, and comparison with those of other RF amplifiers is then the purpose of this dissertation.

II. TYPES AND EFFICIENCIES OF AMPLIFIERS

Before analyzing the operation and efficiency of a class D amplifier, it will be useful to review some of the characteristics of conventional class A, B, and C amplifiers. There are many forms that each of these amplifiers can take. In particular, there generally exisi both voltage and current switching (controlling) forms of each amplifier, as well as a variety of output coupling networks. Amplifiers may employ vacuum tubes, transistorss or any other appropriate devices. For convenience, transistors will usually be used; the analysis for tubes is little different.

For convenience, normalized supply voltages of IV.are assumed. Also, the load resistances are normalized to 1Ω, and transformers provide 1:1 matching and 1:1 impedance conversion.

A. Conventional Amplifiers

1. Class A

Class A is the only type of amplification which is completely linear in its operation. In the class A amplifier (Figure 2.1), the transistor acts as a variable resistor. As the transistor begins to conduct current, the collector voltage drops from the supply voltage toward zero. As the transistor begins to conduct less current, the collector voltage swings upward toward twice the supply voltage.

Figure 2.1. Class A Amplifier.

For such an amplifier, the collector voltage is

$$
\begin{equation*}
v_{q}(\theta)=1-b \sin \theta \tag{2.1}
\end{equation*}
$$

Since the transformer matches 1:I, and the load resistance is 1Ω,

$$
\begin{equation*}
i_{q}(\theta)=v_{q}(\theta)=1-b \sin \theta \tag{2.2}
\end{equation*}
$$

In the load,

$$
\begin{equation*}
v_{0}(\theta)=i_{0}(\theta)=3 \sin \theta \tag{2.3}
\end{equation*}
$$

Thus the output power is given by

$$
\begin{align*}
& P_{0}=\frac{1}{2 \pi} \int 1 \dot{v}_{0}^{2}(\theta) d \theta \\
& 0 \tag{2.4}\\
& \quad 0 \\
&=\frac{1}{2 \pi} \int b^{3} \sin ^{2} \theta d \theta \\
& 0 \tag{2.5}
\end{align*}
$$

$$
\begin{align*}
& =\frac{\frac{b}{}^{2}}{2 \pi}\left[\frac{\theta}{2}-\frac{\sin 2 \theta}{4}\right]_{0}^{2 \pi} \tag{2.6}\\
& \left.=\frac{b^{2}}{2 \pi} \Gamma \pi-0\right]=\frac{b^{2}}{2} \tag{2.7}
\end{align*}
$$

The voltage input is 1.0 volt, and the current input is the same as the transistor current, thus the input power is

$$
\begin{align*}
& 2 \pi \\
P_{i} & =\frac{1}{2 \pi} \int I(1-b \sin \theta) d \theta \tag{2.8}\\
0 & \frac{I}{2 \pi}[\theta+b \cos \theta]_{0}^{2 \pi}=1 .
\end{align*}
$$

The efficiency is defired as the ratio of power output to power input, or

$$
\begin{equation*}
\eta=\frac{p_{o}}{P_{i}}=\frac{b^{2}}{2} \tag{2.io}
\end{equation*}
$$

Since the smpply voltage limits bsuch that

$$
\begin{equation*}
0 \leq|b| \leq 1 . \tag{2.11}
\end{equation*}
$$

the efriciency is also ilmited:

$$
\begin{equation*}
0 \leq \eta \leq 0.5 \tag{2.12}
\end{equation*}
$$

2. Class AB

Class $A B$ is used to describe an amplifier which conducts current more than half of the RF cycle, as in class B (below), but not all of the time, as in class A. Its efficiency is higher than that of class A, but distortion is also introduced.
3. Class B

A class B ampititer operates as a linear (class A) amplifier during the haif: of the cycle when the input is positive, but is cut-ofe when the input is negative, producing waveforms such as shown in Figure 2.2. Harmonics generated by the rectified type waveforms are supressed by the tuned circuit.

Let the output voltage be

$$
\begin{equation*}
v_{0}(\theta)=-b \sin \theta \tag{2.13}
\end{equation*}
$$

For a normalized load resistance of 1Ω,

$$
\begin{equation*}
i_{0}(\theta)=v_{0}(\theta) \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{0}=\frac{b^{2}}{2} \tag{2.15}
\end{equation*}
$$

The current flowing in the RF choke is assumed to be constant, and no DC can flow through the blocking capacitor, so the input current is the average value of the transistor current, or

$$
\begin{align*}
i_{i} & =\bar{i}_{q}=\frac{1}{2 \pi} \int_{0}^{2 \pi} i_{q}(\theta) d \theta \\
& =\frac{2 b}{2 \pi}[-\cos \pi+\cos 0] \tag{2.16}\\
& =\frac{2 b}{\pi} \tag{2.17}
\end{align*}
$$

The input power is then simply

$$
\begin{equation*}
P=1 i_{i}=2 b / \pi \tag{2.19}
\end{equation*}
$$

Figure 2.2. Class B Amplifier.
and the efficiency is

$$
\begin{equation*}
=\frac{b^{2} / 2}{2 b / \pi}=\frac{\pi}{4} b \tag{2.20}
\end{equation*}
$$

The supply voltage requires that
so

$$
\begin{align*}
& 0 \leq|b| \leq 1.0 \tag{2.21}\\
& 0 \leq \eta \leq 0.785 \tag{2.22}
\end{align*}
$$

The power dissipated can thus be reduced by approximately 57% (at maximum output) by the use of class B instead of class A. Two class B amplifiers can be operated "push-pull" to give fully linear operation as a system (thus cancelling harmonics and eliminating the need for a tuned output circuit), but allowing each transistor to operaie class B and retain the higher efficiency.

4. Class C

In class C operation, the transistor conducts current
during Jess than half of the RF cycle (Figure 2.3). Efficiency is improved, but the ability to amplify a signal linearly is. lost, making class C suitable only for the generation of constant amplitude signals (unless the collector voltage is varied by an external modulator). Following the method of Terman (9), assume that the current in an ideal class C amplifier is. a piece of a sinusoid:

$$
i_{q}= \begin{cases}\sin \theta-q & , \frac{\pi}{2}-\delta<\theta<\frac{\pi}{2}+\delta \tag{2.23}\\ 0 & , \text { othervise. }\end{cases}
$$

Where δ represents the duty cycle, and q the quiescent point which gives a duty cycle of δ. Thus,

$$
\begin{equation*}
q=\cos \frac{\delta}{2} \tag{2.24}
\end{equation*}
$$

The input power is found by integrating the product of the supply voltage and the coliector current:

$$
\begin{align*}
& P_{i}=\frac{J}{2 \pi} \int 1 i_{a}(0) d \theta \\
& 0 \tag{2.25}\\
&=\frac{\pi}{2}+\delta \\
&=\frac{1}{2 \pi} \int\left(\sin \theta-\cos \frac{\delta}{2}\right) d \theta \\
& \frac{\pi}{2}-\delta \tag{2.26}\\
&=\frac{1}{\pi}\left(\sin \frac{\delta}{2}-\frac{\delta}{2} \cos \frac{\delta}{2}\right)
\end{align*}
$$

The power output is then determined by

$$
P_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} i_{g}(\theta) v_{o}(\theta) d \theta
$$

Figure 2.3. Class C Amplifier.

Figure 2.4. Class CD Amplifier.

$$
\begin{align*}
& =\frac{1}{2 \pi} \int^{\frac{\pi}{2}+\frac{\delta}{2}} \quad\left(\sin ^{2} \theta-\cos \frac{\delta}{2} \sin \theta\right) d \theta \\
& \quad \frac{\pi}{2}-\frac{\delta}{2} \tag{2.29}\\
& =\frac{1}{4 \pi}(\delta-\sin \delta) .
\end{align*}
$$

Note that the integral above automatically ignores all but the energy at the fundamental frequency. The efficiency is then given by

$$
\begin{equation*}
\eta=\frac{1}{4} \frac{(\delta-\sin \delta)}{\left(\sin \frac{\delta}{2}-\frac{\delta}{2} \cos \frac{\delta}{2}\right)} \tag{2.3I}
\end{equation*}
$$

The graph of η versus output voltage b is presented in Figure 2.5. Efficiency approaching 100% is obtainable by making δ small, but this also reduces the output to zero. A typical operating characteristic might have $\delta \approx 0.4 \cdot 2 \pi$ and $\eta \approx$ 85\%. Note that by letting δ be larger than π, the efficiency for classes $A, A B$, or B (at full output) is obtained. A more detailed analysis is given by Scott (10), including effects of waveforms differing slightly from the truncated sinusoid used herein.

5. Class CD

Class $C D$ is an appropriate name for what is more commonIy called third-harmonic peaking. It is currently used in high-power medium-wave vacuum tube transmitters, such as the Gates VP-100 (11) to improve the efficiency.

It is often difficult to generate a reasonable square

Figure 2.5. Efficiencies of Class A, B, and C Amplifiers.
wave such as is required for true class D operation (described below). However, it is often possible to generate enough of the third harmonic to make the first approximation to a square wave. The third harmonic is controlled by means of additional tuned circuits which are added in the grid and plate circuits. As shown in Figure 2.4, the effect of the third harmonic is to flatten both the voltage and current waveforms. Power dissipated in the tube is reduced because the voltage is smaller while the tube is conducting current. In an example given by Stokes of a 125 kV transmitter (12), class C operation produced an efficiency of 82%, while class $C D$ produced an efficiency of 88%.

B. Switching Amplifiers

An ideal class D amplifier has either rectangular voltage waveforms, rectangular current waveforms, .or both. The result of the rectangular waveforms is that power dissipated in the switching transistors is much less than the power dissipated in other kinds of amplifiers.

There are many different versions of switching, or class D, amplifiers. Consider first the simple case where both voltage and current waveforms are rectangular (Figure 2.6). When the transistor is saturated, it has zero resistance, and the voltage across it is zero. A current of lA flows in the load, causing it to dissipate $1 W$ of power. When the transistor is cut-off, no current flows and power is dissipated neither

Figure 2.6. Swiiching Amplifier.
in the load nor in the transistor. Thus the average power delivered to the load is 0.5 W ($1 / 2$ duty cycle), and the efficiency is $\mathbf{3 . 0 0 \%}$.

In a real amplifier, however, the pulse transistions are not instataneous, and the saturation voltage is not zero, so. some power is dissipated in the transistor. A detailed analysis of the efficiency of this type of amplifier is presented by Ramachandran (13). One significant advantage of such an amplifier is that efficiency improves with increasing output power.

1. Class $A D$ amplifier

The terms class $A D$ and class $B D$ (which follows) were apparently originated by Martin (14), (15) to describe different types of conventional PWM amplifiers. These amplifiers will
be analyzed as they are used to generate an RF carrier (i. e., generation of a single sinusoid).

Consider the voltage switching version of the class AD amplifier shown in Figure 2.7. A set of four transistors operates as a two-position switch to generate a rectangular voltage waveform $w(\theta)$. A tuned circuit (or low pass circuit) passes the energy at the carrier frequency with no attenuation, and rejects energy at the switching frequency and its harmonics.

The instantaneous width Y is made to vary as

$$
\begin{equation*}
y=\frac{2 \pi}{\beta}[q+b \sin \theta] \tag{2.32}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta=\omega_{c} t=2 \pi f_{c} t \tag{2.33}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta=f_{s} / F_{c} \tag{2.34}
\end{equation*}
$$

Where f_{s} is the switching frequency and f_{c} is the carrier frequency. For class AD operation, q; which determines the quiescent (no signal) pulse width, is restricted:

$$
\begin{equation*}
0 \leq q \leq 1 \tag{2.35}
\end{equation*}
$$

so b is also restricted

$$
\begin{equation*}
0 \leq q \pm b \leq 1 \tag{2.36}
\end{equation*}
$$

To achieve maximum output,

$$
\begin{equation*}
q=b=0.5 \tag{2.37}
\end{equation*}
$$

although to reduce distortion, it is sometimes desirable to use smaller values of q and b (See Black (16) or Ramachandran

Figure 2.7. Class AD Amplifier.
(13).

Current can flow either direction through either side of the switck; as is required to maintain sinusoidal current through the series tuned circuit. In Figure 2.7, it can be seen that there is a net flow of current from the supply to ground.

The ideal efficiency is 100%, as in the switching amplifier previously described, but, as before, actual circuit parameters prevent this. Assume that the deviations of the actual circuit from ideal operation are small. The power output will undergo little change, and will be approximately

$$
\begin{equation*}
P_{0}=\frac{b^{2}}{2 \pi} \tag{2.38}
\end{equation*}
$$

Let the rise and fall times be represented by τ_{5} and τ_{6}, respectively, the values of which are given in terms of a cycle at m_{s} (i=e., if a rise time takes 10% of one cycle at $\bar{E}_{s}, T_{5}=0 . i \cdot 2 \pi / f_{s}$). For small T_{i}, the output current is approximately the same over the entire switching interval, or

$$
\begin{equation*}
i_{q}\left(\theta+\tau_{i}\right) \approx i_{q}(\theta) \tag{2.39}
\end{equation*}
$$

This allows the assumption of a linear rise/fall of the current between 0 and $i_{q}(\theta)$, and a linear fall/rise of voltage between 1 and 0 (Figure 2.8). Thus

$$
P_{D R T R A N S}(\theta)=\frac{1}{2 \pi} \int v_{q}(\theta) i_{q}(\theta) d \theta
$$

Figure 2.8. Rise/Fall Times in a Class AD Amplifier.

$$
\begin{equation*}
=\frac{i_{q}(\theta)}{2 \pi} \int_{0}^{\tau_{i}}\left(1-\frac{\theta}{\tau_{\dot{I}}}\right)\left(\frac{\theta}{\tau_{i}}\right) d \theta \tag{2.4I}
\end{equation*}
$$

$=\frac{i_{g}(\theta)}{2 \pi}\left(\frac{1}{\tau} \int_{0}^{\tau_{i}} \theta d \theta-\frac{1}{\tau_{i}^{i}} \int_{0}^{\tau_{i}} \theta^{2} d \theta\right)(2.42)$
$=\frac{1}{2 \pi} \frac{i}{6} \tau_{i_{q}}(\theta) \quad$.
The total power dissipated is then the sum of the power dissipated at each pulse transition; multiplied by two, since two transistors are switching at each transition. Assuming that there are β pulses per cycle,

28

$$
\begin{equation*}
P_{D R}=2 \Sigma i\left(\theta_{n}\right) \cdot \frac{1}{2} \frac{T_{i}}{6} \tag{2.44}
\end{equation*}
$$

$$
=\frac{1}{16 \pi}\left[\tau_{5} \sum_{n=1}^{\beta} i\left(\theta_{2 n-1}\right)+\tau_{6} \dot{n=1} \dot{\Sigma}_{n} i\left(\theta_{2 n}\right)\right] \cdot \quad \text { (2.45) }
$$

The effect of these summations is to average $i_{q}(\theta)$, thus

$$
\begin{align*}
P_{\mathrm{DR}} & \approx \frac{1}{6 \pi}\left(\frac{\beta \tau_{5} q b}{2}+\frac{\beta \tau_{6} q b}{2}\right) \tag{2.46}\\
& =\frac{\beta q b}{12 \pi}\left(\tau_{5}+\tau_{6}\right)=\frac{\beta q b}{12 \pi} \sigma \tag{2.47}
\end{align*}
$$

Consideration must also be given to the effects of nonzero saturation voltages. Osborne (4) has approached this problem by insertion of a saturation resistance in series with switch. It would seem that a constant saturation resistance would be accurate for square-wave current, but based on observations of the prototype class D RF amplifier (see Chapter XIV), a saturation voltage seems more appropriate.

Let v_{s} be the normalised saturation voltage (i.․․, if the actual supply voltaçe is 10 V , and the actual saturation voltage is 0.5 V , then $v_{s}=0.05$). The power dissipated due to the saturation effects can then be determined by inserting sources of voltage v_{s} in series with the ideal transistors, with polarity such that power is consumed instead of generated (Figure 2.9).

The saturation voltage always acts to consume power, thus

$$
P_{D S}=\frac{l}{2 \pi} \int_{0}^{2 \pi} v_{S}\left|i_{0}(\theta)\right| d \theta
$$

Figure 2.9. Saturation Voltages in a Class AD Amplifier.

$$
\begin{align*}
& \therefore \frac{v_{\bar{s}}}{2 \pi} 2 \int z \sin \theta a \theta \tag{2.49}\\
& \quad 0 \\
& =\frac{v_{S} b}{\pi}(-\cos \pi+\cos 0)=\frac{2 v_{S} b}{\pi} \tag{2.50}
\end{align*}
$$

The input power is then

$$
\begin{equation*}
P_{i}=P_{o}+P_{D R}+P_{D S} \tag{2.51}
\end{equation*}
$$

and the efficjency is

$$
\begin{equation*}
\eta^{\prime}=\frac{P_{o}}{P_{o}+P_{i}} \tag{2.52}
\end{equation*}
$$

A plot of the efficiency for several values of σ, v_{s}, and β is given in Figure 2.10 (Remember that for class $A D, b \leq \frac{2}{2}$.). Note that σ is a ratio; and amplifierswith identical rise/fall times have σ proportional to f_{S}.

Figure 2.10. Efficiency of Class $A D$ and $B D$ Amplifiers.
2. Class BD amplifier

The class $B D$ amplifier might be called a bipolar or pushpull version of the class AD amplifier just discussed. The quiescent pulse width is zero, so for no signal input, all transistors are idle. Positive pulses are generated when the input signal is positive; and negative pulses are generated when the input signal is negative. In either case, the linear relationship between input signal and pulse width remains. This amplifier has the advantage of eliminating drive when there is no signal input, but has the disadvantage of crossover distortion due to the difficulty of making very short pulses when the signal is small.

A circuit for the class $B D$ amplifier is shown in Figure 2.11.

The efficiency is determined in the same manner as for the class AD amplifier, and the same equations apply. However, for cla ass BD ;

$$
\begin{equation*}
0 \leq|b| \leq 1 \tag{2.53}
\end{equation*}
$$

as comparea with a maximum value of 0.5 for the class $A D$ amplifier. The significance of this is that in a class BD amplifier; the output power can become four times as large as that of the class AB amplifier, while the power dissipated is only doubled.

Also, note that in class $B D$, there are four possibly different rise/fall times, so

Figure 2.11. Class BD Amplifier.

$$
\begin{equation*}
\sigma=\left(\tau_{5}+\tau_{6}+\tau_{7}+\tau_{8}\right) \tag{2.54}
\end{equation*}
$$

3. Class D RF amplifier

The class D RF amplifier (Figure 2.12) has a circuit similar in form to the circuit of the class $B D$ amplifier. However, the operation is markedly different, in that switching occurs at the carrier frequency; instead of a higher frequency.

A set of four transistors forms a bipolar pulse train with instantareous width y. The fundamental component which

$i_{1}(t)$

$i_{2}(t)$

$i_{3}(t)$

$i_{4}(t)$

Figure 2.12. Class D RF Amplifier.
appears at the output is

$$
\begin{equation*}
v_{0}(\theta)=i_{0}(\theta)=b \sin \theta \tag{2.55}
\end{equation*}
$$

and is proportional to the sine of the pulse width:

$$
\begin{equation*}
\mathrm{b}=\frac{4}{\pi} \sin \mathrm{y} \tag{2.56}
\end{equation*}
$$

Thus

$$
\begin{equation*}
P_{0}=\frac{b^{2}}{2}=\frac{8}{\pi^{2}} \sin ^{2} y . \tag{2.57}
\end{equation*}
$$

fgain, the ideal efficiency is 100%, but is reduced by actual circuit parameters. If the same assumptions are made about linear rise/fall shape as with the class AD amplifier, the power dissipated in any one transistor during one transition is given by

$$
\begin{align*}
P_{D R ~ T R A N S} & =\frac{1}{2 \pi} \frac{\tau_{i}}{6} \cdot\left|i_{q}(\theta)\right| \tag{2.58}\\
& =\frac{\tau_{i}}{12 \pi}\left(\frac{4}{\pi} \sin y\right)|\sin \theta| \tag{2.59}\\
& =\frac{2 \tau_{i}}{3 \pi^{2}} \sin y|\cos y| \tag{2.60}\\
& =\frac{2 \tau_{i}}{3 \pi^{2}}|\sin 2 y| \tag{2.61}
\end{align*}
$$

There are four pulse transitions during each RF cycle, and two transistors switching at each transition, so

$$
\begin{equation*}
P_{D R}=\frac{4 \sigma}{3 \pi^{2}}|\sin 2 y| \tag{2.62}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma=\tau_{5}+\tau_{6}+\tau_{7}+\tau_{8} . \tag{2.63}
\end{equation*}
$$

The power dissipated due to non-zero saturation voltage
is again computed by insertion of sources of v_{s} in series with the switch. Since only one transistor conducts at a time,

$$
\begin{align*}
P_{D S} & =\frac{1}{2 \pi} \int v_{s}\left|i_{q}(\theta)\right| d \theta \\
0 & \tag{2.64}\\
& =\frac{2}{\pi^{2}} v_{s} \sin y 2 \int \sin \theta d \theta \\
& =\frac{8}{\pi^{2}} v_{s} \sin y
\end{align*}
$$

The above equations [(2.57), (2.62), and (2.65)] are accurate when the grounding transistors are connected to small voltage sources rather than the ground, to eljminate changes in the signal output (Chapter V). However, if connections are made directly to the ground, the saturation voltage injects a signal at the carrier frequency which reduces the output power, and hence the efficiency.

Exact calculations of these effects are difficult, since the saturation effect does not reinject a signal which varies linearly with the carrier amplitude. However, for large amplitudes ($\gg v_{s}$) of the carrier, the saturation effect is simply a square wave of frequency f_{c} ard peak to peak height $2 v_{s}$. In Chapter IV, it is shown that the fundamental component of such a wave has magnitude $4 v_{s} / \pi$.

The previous equations can be modified accordingly.

First,

$$
\begin{align*}
v_{0}(\theta)=i_{0}(\theta) & =\left(b-\frac{4}{\pi} v_{S}\right) \sin \theta \tag{2.67}\\
& =\frac{4}{\pi}\left(\sin y-v_{s}\right) \sin \theta \tag{2.68}
\end{align*}
$$

and

$$
\begin{equation*}
P_{0}=\frac{8}{\pi^{2}}\left(\sin y-v_{s}\right)^{2} \tag{2.69}
\end{equation*}
$$

Similarly,

$$
\begin{align*}
P_{D R} & =\frac{4 \sigma}{3 \pi^{2}}\left(\sin y-v_{S}\right)|\cos y| \tag{2.70}\\
& =\frac{4 \sigma}{3 \pi^{2}}\left(|\sin 2 y|-v_{S} \cos y\right) \tag{2.71}
\end{align*}
$$

and

$$
\begin{equation*}
P_{D S}=\frac{8}{\pi^{2}} v_{S}\left(\sin y-v_{S}\right) \tag{2.72}
\end{equation*}
$$

Note that these hold only when sin y is large enough that saturation occurs nearly instantaneously. These equations tend to be worse than the actual case for small y.

A monopolar version of this amplifier is also possible (Possibly, if the term class E were used, it could be called Class AE, and the bipolar version class BE.). As in the case Of class $A D$ and $B D$ amplifiers; the efficiency of the monopolar version is generally lower than that of the bipolar version, due to the decreased output voltage ($b \leq 2 / \pi$ for monopolar). However; the monopolar amplifier has half the number of pulse transitions, which can result in higher efficiency. If a power supply of +2 V is used with monopolar PWM, (without damage to the transistors), P_{0} and $P_{D S}$ remain the same as for

Figure 2.13. Efficiency of a Class D RF Amplifier.
bipolar PWM, ($\pm 1 V$) while $P_{D R}$ is halved. This might have applications where σ is large and the dominant source of inef-; ficiency, since its effect is to reduce σ to half of its value for bipolar FWM.

A graph of efficiency for the class D RF amplifier is given in Figure 2.13. A slight increase in efficiency over class $A D$ or $B D$ with the same parameters is due to two effects. First, the number of pulse transitions is reduced. Secondly, when a transition occurs in the RF amplifier, the current is small. When the output is large, the pulse is wide, and switching occurs near the minimum value. When the pulse is narrow, switching occurs near the peak current, but the current is sma11. Either way, the efficiency is increased.
III. BASIC IMPLEMENTATION

The generation of pulses whose width varies as the inverse sine of a modulating signal seems, at first, to be a formidable task. However; it is actually somewhat easier to generate these pulses than pulses whose width is linearly related to the modulating signal; as are required by ordinary (class AD) PWM. Possibly, the problem of generating the pulses has discouraged previous researchers. The use of a feedback network as a means to generate the inverse sine pulses has been suggested (17); (18), but is not actually necessary.

First consider the method used by a typical conventional pulse width modulator (Figure 3.1). A triangular reference wave $r(t)$; periodic at switching frequency f_{s} s is generated and compared with input signal $v(t)$. Whenever $v(t)$ is greater than $r(t) ;$ the output produces a puise (+1). Other-. wise, the output remains at 0. (In actual implementation, the difference $v(t)-r(t)$ is compared with 0).

Figure 3.2(a) illustrates the action of comparison of the modulating signal $x(t)$ to $r(t)$ to obtain a linear pulse width. To obtain an inverse sine relationship, it is only necessary to predistort the ramp shape to get a sinusoidal shape (Figure 3.2(b)).

The application of a predistorted reference wave to the generation of pulses in an $A M$ transmitter $(x(t) \geq 0)$ is shown in Figure 3.3. A block diagram of this transmitter is shown

Figure 3.1. Comparator Pulse Generation for Class AD.

(a) Linear

(b) Inverse Sine

Figure 3.2. Reiationships Between Modulating Signal and Pulse Width.

PULSE
TRAIN
$w(t)$

FILTERED
OUTPUT
v(七)

Figure 3.3. Waveforms in Class D AM System.
in Figure 3.4.
The transmitter has inputs from a sinusoidal oscillator at the desired carrier frequency, and from the audio frequency (AF) modulating signal: The carrier frequency sinusoid is clipped to produce square wave $s\left(\omega_{c} t\right)$. It is also phase shifted by $\pi / 2$; and then inverted. The inverted and uninverted cosine waves thus produced are then rectified, and the outputs combined to produce the reference wave $r(t)$. The reference wave is then compared to the AF input $x(t)$, and pulses are generated whenever the latter is greater.

An AND gate generates a. pulse whenever both the comparator output and the clipped wave $s\left(\omega_{c} t\right)$ are positive. Similarly, a second AND acts on the comparator output and the inverted $s\left(\omega_{c} t\right)$; and generates a pulse when both are positive. These two pulses are amplified to drive Q1 and Q4, which are the positive and negative positions of the three position switch; respectively. The output of the comparator is inverted and amplified to drive transistors Q2 and Q3, which form the grounding position of the switch.

A balanced (two polarity) modulator for the generation of double sideband supressed-carrier signals (DSB/SC) can be made by some simple additions to the AM transmitter. Referring to Figure 3.5, note that in a DSB/SC signal, a phase shift of.the carrier occurs when the modulating signal changes sign. This effect can be accomplished in the class D transmitter by reversing the pulse polarities. A circuit to do

Figure 3.4. Class D AM Transmitter.

Figure 3.5. Generation of $A M$ and $D S B / S C$.
this compares the absolute value of the modulating signal to the reference wave, and uses a clipped audio wave and additional logic to determine pulse polarity.

Generation of single-sideband signals (SSB) is also possible, but is slightly more complicated. Note that any signal can be regarded as a single sideband signal; generation of independent sideband, vestigal sideband, etc.. is also possible.

There are two commonly used methods of producing a single sideband signal: the filter method and the phasing method; the same signal is produced either way. Although the filter method is somewhat easier to implement, the phasing more clearly illustrates the operation of class D SSB amplification. In the phasing method, the audio signal and the carrier are both phase shifted by 90° (the direction of the shifts detera
mines whether upper sideband or lower sideband is produced). The phase-shifted audio signal then modulates the unshifted carrier, and the unshifted audio modulates the shifted carrier. The sum of these two modulated signals, properly balanced, cancels one sideband.

There are three possible means of using class D to amplify a single sideband.signal (Figure 3.6). The first two, interläcing and overlapping, are similar in that they both ret quire use of the phasing type method to produce two separate signals. A DSB/SC modulating system is required for each signa1. In the interlacing method, the magnitudes of both $x_{p}(t)$ and $x_{q}(t)$ are reduced so that the pulses generated by either modulation do not exceed $\pi / 2$. The outputs from the logic circuits of both modulators drive the same final switching transistors, producing two interlaced puise trains. In the overlapping method, the magnitudes of $x_{p}(t)$ and $x_{q}(t)$ have the usual restriction of less than 1 (to produces pulses whose total widths are less than π). When pulses from the two modulators overlap, either a 0 (ground) or double-value pulse is generated, depending on whether the pulses are of different or similar polarities.

The third method is an application of Kahn's method of envelope elimination and restoration (19), (20). Referring to Figure 3.7, one can see that it is possible to represent the sum of the outputs of the two balanced modulators used in the phasing method as a signal with envelope $E(t)$ and

Figure 3.6. Class D SSB Techniques.
phase $\varphi(t):$

$$
\begin{align*}
x_{p}(t) \sin \omega_{C} t & +x_{q}(t) \cos \omega_{C} 亡 \\
& =E(t)\left[\sin \omega_{c} t+\varphi(t)\right] \tag{3,1}
\end{align*}
$$

where

$$
\begin{equation*}
E(t)=\sqrt{x_{p}^{2}(t)+x_{q}^{2}(t)} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi(t)=\arctan \frac{x_{q}(t)}{x_{p}(t)} \tag{3,3}
\end{equation*}
$$

(The function arctan x_{q} / x_{p} as used herein should really be written $\arctan \left(x_{q}, x_{p}\right)$, since it is to determine the quadrant

Figure 3.7. SSB Generation.
of the point $\left.\left(x_{q}, x_{p}\right).\right)$
A system for implementing this method is shown in Figure 3.8. with waveforms for a two tone signal. A low-level SSB signal is generated by any convenient method. An envelope detector produces $E(t)$, which is the audio input to the AM transmitter previously described. The input signal is also fed to a clipping circuit to produce square wave $s\left[\omega_{c} t+\varphi(t)\right]$. Note that the phase information is retained, but the ampletude information is eliminated. If this square wave is exsanded in a Fourier series,

$$
s\left[\omega_{C} t+\varphi(t)\right]=\frac{4}{\pi} \sin \left[\omega_{C} t+\varphi(t)\right]
$$

INPUT-OUTPUT

vorumar

 $E(t)$
$s\left[\omega_{c} t+\varphi(t)\right]$

ת

momom manan

$$
w(t)
$$

Figure 3.8. Class D SSB Generation Using Kahn's Method.

$$
\begin{equation*}
+\frac{4}{3 \pi} \sin \left[3 \omega_{c} t+3 \varphi(t)\right] \tag{3.4}
\end{equation*}
$$

$+\ldots$
When this is applied to a bandpass filter, only the fundamental frequency and its modulation ($\sin \left[\omega_{c} t+\varphi(t)\right]$) remain (assuming negiigible splatter from modulation of the harmonics of the carrier). The output of this bandpass filter replaces the sinusoidal oscillator input to the AM transmitter.

Of the three methods, the third is probably the most advantageous. First, it requires no additional high speed logic (the SSB signal can be generated at a low frequency, envelope and phase detected at that frequency, and the phase signal. heterodyned to the desired carrier frequency). Secondly, it requires fewer pulse transitions, which should make it more efficient. The overlapping method also requires the addition of switches for +2 and -2 volts.

There is a drawback to Kahn^{\prime} 's me'hod applied to class D RF generation: Spurious products may result: from inherent modulation of the odd harmonics of the carrier. If these products are serious enough (Chapter V), one of the other methods might be used. Interlacing might be preferred due to its simplicity compared to overlapping.

It should be noted that Kahn's method can be used with transmitters other than class D. At very high frequencies, it may be difficult to control the pulse width accurately, but it may be possible to make a constant-carrier class D amplifier
with high efficiency. At even higher frequencies, square wave generation (class D) may be impossible altogether, but class C may be used. In these cases; the class' D or C RF amplifiers can amplify the phase-modulated carrier, and a class AD audio. type amplifier can be used for the envelope. These two sig-: nals are then combined by collector modulation. The resultant system would be more efficient than class B, but somewhat more complicated than a class D RF version.
IV. BASIC SPECTRAL ANALYSIS

The distortion in any amplifier is one of the factors which limit its usefulness. In an RF amplifier, spurious products; which are distortion products which fall outside of the allocated frequency band, can be a serious problem. An unwanted product $30 d B$ below the desired signal level is nearly unnoticeable if it is inside the desired bandwidth. However, this same product falling outside of the channel allocated can be much stronger than a distant (weak) station occupying the adjacent channel. Thus knowledge of the spurious products is crucial to application of the class D RF amplifier.

The method used in this dissertation to analyze the spectrum of a non-linear amplifier is to analyze the modulation of the harmonics of the carrier or switching frequency. A waveform basic. to the particular amplifier is decomposed into its forurier components; whose amplitudes are functions of some parameter of the waveform (e.g., pulse width). A relationship between the modulating waveform and the parameter is obtained; and each of the Fourier coefficients of the basic waveform is then expanded into a Fourier series whose period is that of the modulating function.

This technique was called "quasi-static" by Ramachandran (13), and was used by Black (16) to analyze the spectrum of ordinary pulse width modulation. It is similar to the method of Volterra (21), in which the time variable for the modula-
tion and the time variable for the carrier are regarded as two completely independent variables.

The reliability of this method is best understood conceptually by considering it in reverse. Choose a time t. At this time t_{s} a pulse width y can be determined; based on the modulating voltage at that time. Substitution of the values of y into the formula for the Fourier coefficients of a pulse train yields a series of constants. Now for this series of constants, the waveform which is the sum of the specified components must have the value $+1,0$, or -1 , since for any value of y some pulse train is generated. This will hold for any y, hence the puise train is produced for all values of t from the time-varying Fourier coefficients obtained in this method of analysis.

Once the time varying Fourier coefficients have been decomposed into their own series of Fourier components, these can be thought of as modulation around the Fourier components of the basic waverorms, and the total spectrum determined from this. A continuous spectrum could be used in the analysis which follows, but it adds little and complicates much. Therefore, all spectra herein will be discrete; i.e., composed of bias, sinusoids, and cosinusoids periodic in a known interval.

Possibly the best argument in favor of this method of analysis is that results obtained with it have been verified by computer simulation.

Begin by considering a monopolar pulse train $f_{+}(\theta)$ (Figure 4.1). The Fourier series for $f_{+}(\theta)$ is

$$
f_{+}(\theta)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)
$$

where a_{0}, a_{n}, and b_{n} are determined as follows:

$$
a_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f_{+}(\theta) d \theta=\frac{y}{\pi}
$$

$$
2 \pi
$$

$$
a_{n}=\frac{1}{\pi} \int f_{+}(\theta) \cos n \theta \theta d \theta
$$

$$
0
$$

$$
\varphi+y
$$

$$
=\frac{1}{\pi} \int \cos n \theta d \theta
$$

$$
\varphi-y
$$

$$
=\frac{1}{n \pi}[\sin n(\varphi+y)-\sin n(\varphi-y)]
$$

$$
=\frac{2}{n \pi}(\cos n \varphi)(\sin n y)
$$

$$
2
$$

$$
\begin{equation*}
b_{n}=\frac{1}{\pi} \int_{0}^{f_{+}}(\theta) \sin n \theta \cdot d \theta \tag{4.厄}
\end{equation*}
$$

$$
\varphi+Y
$$

$$
\begin{equation*}
=\frac{1}{\pi} \int \sin n \theta d \theta \tag{4.8}
\end{equation*}
$$

$$
\Phi-Y
$$

$$
\begin{equation*}
=\frac{-1}{n \pi}[\cos n(\varphi+y)-\cos n(\varphi-y)] \tag{4.9}
\end{equation*}
$$

Figure 4.1. Monopolar Pulse $f_{t}(\theta)$.

$$
\begin{equation*}
=\frac{2}{n \pi}(\sin n \varphi)(\sin n y) \tag{4.10}
\end{equation*}
$$

Combining these,

$$
\begin{align*}
& \infty \\
& f_{+}(\theta)=\frac{Y}{\pi}+\frac{2}{\pi} \Sigma(\sin n y)[(\cos n \varphi)(\sin n \theta) \\
& \mathrm{n}=1 \\
& +(\sin n \varphi)(\sin n \theta) \theta] \tag{4.11}\\
& \therefore \infty \\
& =\frac{y}{\pi}+\frac{2}{\pi} \Sigma \frac{(\sin n y)}{n}[\cos (n \theta-n \varphi)] . \tag{4.3.2}\\
& \mathrm{n}=1
\end{align*}
$$

The spectrim of a bipolar pulse train can now be determined by decomposing it into two monopolar pulse trains, one negative; and one positive (Figure 4.2).

$$
\begin{gather*}
\mathrm{I}_{-}(\theta)=-\frac{\dot{Y}}{\pi}-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin n y}{n} \cos [n \theta-n(\varphi+\pi)] \\
: \tag{4.13}\\
=-\frac{Y}{\pi}-\frac{2}{\pi} \sum \frac{\sin n y}{n} \cos [(n \theta-n \varphi)-n \pi] \\
\quad n=1
\end{gather*}
$$

Figure 4.2. Decomposition of Bipolar Pulse.

$$
\begin{equation*}
=-\frac{\dot{y}}{\pi}-\frac{2}{\pi} \sum_{n=1}^{\infty}(-1)^{n} \frac{\sin n y}{n} \cos (n \theta-n \varphi) \tag{4.15}
\end{equation*}
$$

Thus,

$$
\begin{align*}
f_{ \pm}(\theta)= & f_{+}(\theta)+\ddot{H}_{\ldots}(\theta) \tag{4.16}\\
= & \frac{4}{\pi} \sum \frac{\sin n y}{n} \cos (n \theta-n \varphi) \tag{4.17}\\
& n=1,3,5 \ldots \\
& \quad \infty \\
= & \frac{4}{\pi} \sum \frac{\sin (2 m-1) y}{2 m-1} \cos (2 m-1)(\theta-\varphi) \\
& m=1
\end{align*}
$$

The special case of $\varphi=\pi / 2$ (sine wave carrier) will be used frequently. In this case,

$$
\begin{align*}
& f_{+}(\theta)=\frac{y}{\pi}+\frac{2}{\pi} \sum_{m=i}^{\infty}\left[\frac{(-1)^{m}}{2 m} \sin 2 m y \cos 2 m \theta\right. \\
& m= \\
&\left.+\frac{(-1)^{m+1}}{2 m-1} \sin (2 m-1) y \sin (2 m-1) \theta\right] \tag{4.19}
\end{align*}
$$

and

$$
f_{ \pm}(\theta)=\frac{4}{\pi} \sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{2 m-1} \sin (2 m-1) y \sin (2 m-1) \theta
$$

There are two special cases of square waves which will be used later. These are the infinitely-clipped sinusoid $s(\theta)$ and the infinitely-clipped cosinusoid $c(\theta)$:

$$
\begin{align*}
s(\theta)= & f_{ \pm}\left(\theta ; \varphi=\frac{\pi}{2}, Y=\frac{\pi}{2}\right) \tag{4.21}\\
= & \frac{4}{\pi} \sum \frac{1}{2 m+1} \sin (2 m+1) \theta \\
& m=0 \tag{4.22}\\
c(\theta)= & f_{ \pm}\left(\theta ; \varphi=0, Y=\frac{\pi}{2}\right) \\
= & \frac{4}{\pi} \Sigma \frac{(-1)^{m}}{2 m+1} \cos (2 m+1) \theta \tag{4.23}\\
& m=0 \tag{4.24}
\end{align*}
$$

Another waveform to be used is the truncated ramp $r(\theta ; \lambda ; \tau)$ (Figure 4.3). A piecewise description of this waveform is
$r(\theta)= \begin{cases}0 & , 0 \leq \theta \leq \lambda \\ \frac{I}{\tau}(\theta+\lambda-\tau) & , \lambda \leq \theta \leq \lambda+\tau \\ 0 & , \lambda+\tau \leq \theta\end{cases}$
The Fourier coefficients are then evaluated, as for $f_{+}(\theta):$

$$
\begin{equation*}
a_{0}=\frac{1}{2 \pi} \cdot \frac{1 \pi}{2}=\frac{\pi}{4 \pi} \tag{4.26}
\end{equation*}
$$

Figure 4.3. Ramp Waveform.

$$
\begin{align*}
& 2 \pi \\
& a_{n}=\frac{1}{\pi} \int x(\theta) \cos n \theta d \theta \\
& 0 \\
& \lambda+\tau \\
& =\frac{1}{\pi} \int \frac{1}{\tau}(\lambda+\theta-\tau) \cos n \theta d \theta \\
& \lambda \\
& \lambda+\tau \\
& =\frac{1}{\pi \tau n^{2}} \int[n(\lambda+\tau) \cos n \theta-n \cos n \theta] \operatorname{dn} \theta \\
& =\frac{1}{\pi \tau n^{2}}[(\sin n \tau-n \tau) \sin n \theta+(1-\cos n \tau) \cos n \theta] \quad \text { (4.30) } \\
& 2 \pi \\
& b_{n}=\frac{1}{\pi} \int x(\theta) \sin \pi \theta \cdot d \theta \\
& 0 \\
& \lambda+\tau \\
& =\frac{1}{\pi} \int \frac{1}{\tau}(\lambda+\theta-\tau) \sin \pi n d \theta \tag{4.32}\\
& =\frac{1}{\pi T n^{2}} \quad \int \quad[n(\lambda+\tau) \sin n \theta-n \theta \sin n \theta] \operatorname{dn} \theta \\
& \lambda
\end{align*}
$$

Figure 4.4. Triangular Wave $\Lambda(\theta)$.
$=\frac{1}{\pi n^{2}}[(1-\cos n \lambda) \sin n \lambda+(n \tau-\sin n \tau) \cos n \lambda](\dot{4} .34)$
The decomposition of a triangular wave $D(\theta)$ (Figure 4.4)
can be obtained by use of four ramp-type waveforms:

$$
\begin{aligned}
& \lambda(\theta)=r\left[-\theta ; \frac{\pi}{2},-\frac{\pi}{2}\right]+r\left[\theta ; \frac{\pi}{2}, \frac{\pi}{2}\right] \\
&-r\left[-\theta ; \frac{3 \pi}{2},-\frac{\pi}{2}\right]-r\left[\theta ; \frac{3 \pi}{2} ; \frac{\pi}{2}\right] \\
& \infty \\
&= \frac{8}{\pi^{2}} \sum \frac{(-1)^{m+1}}{(2 m-1)^{2}} \sin (2 m-1) \theta \\
& m=1
\end{aligned}
$$

The composition of other special waveforms will be derived as required.

V. BASIC SPECTRUM OF A CLASS D RF AMPLIFTER

The techniques developed in Chapter IV will now be used to determine the nature of the spurious products generated by width modulation of a class D RF amplifier.

The modulating signal will be denoted $x(t)$ or $x(\theta)$. The spectrum of the modulating signal is assumed to be bandlimited; i.․ㅡ.,

$$
\begin{equation*}
x(\omega)=0, \quad\left[\omega_{1}\right] \geq \omega_{x} \tag{5.1}
\end{equation*}
$$

When the notation $x(\theta)$ is used; it will be understood that

$$
\begin{equation*}
\theta=\dot{\omega}_{x} t=2 \pi f_{x} t \tag{5.2}
\end{equation*}
$$

unless specified otherwise. (The equivalents for the carrier are denoted $\theta_{C^{\prime}}, \omega_{C^{\prime}}$, and f_{C})

For single-tone amplitude modulation,

$$
\begin{equation*}
x(\theta)=a_{x 0}+b_{x 1} \sin \theta \tag{5.3}
\end{equation*}
$$

For double-sideband supressed-carrier modulataon, $a_{x 0}=0$, and for maximum output,

$$
\begin{equation*}
x(\theta)=\sin \theta \tag{5.4}
\end{equation*}
$$

This is regarded as a severe or extreme test signal, since all of the energy in the modulating signal is concentrated at the bandedges (It is equivalent to the commonly-used two-tone test for SSB.).

The inverse-sine predistorted signal for $x(\theta)$ is denoted by $y(\theta)$ and is given by

$$
\begin{equation*}
y(\theta)=\arcsin x(\theta) \tag{5.5}
\end{equation*}
$$

Note that $y(\theta)$ may never actually appear in an actual ampli-
fier. However; it is a convenience in the analysis of the amplifier.
A. Bipolar PWM

The modulation of the $k^{\text {th }}$ harmonic of the carrier is denoted by $z_{k}(\theta)$. A bipolar train for $A M$ and $D S B / S C$ signals can then be written

$$
\begin{align*}
& \infty \\
& w(\theta)=\frac{4}{\pi} \quad \Sigma \frac{\sin (2 m+1) y(\theta)}{2 m+1} \sin [\theta c+\infty(\theta)] \tag{5.6}\\
& \mathrm{m}=0 \\
& \infty \\
& =\frac{4}{\pi} \quad \Sigma \frac{z_{2 m+1}(\theta)}{2 m+1} \sin (2 m+1) \theta_{c} \quad . \tag{5.7}\\
& \mathrm{m}=0
\end{align*}
$$

(Note that $\varphi(\theta)$ used above indicates phase shift from a sinusoidal carrier and is not the same φ used in Chapter IV.)

It is important to remember that negative modulation ($x<0$) is not accomplished by an actual negative pulse width, but by phase shifting the pulse train $(\varphi(\theta)=\pi)$. Thus

$$
\begin{equation*}
0 \leq y(\theta) \leq \frac{\pi}{2} \tag{5.8}
\end{equation*}
$$

and

$$
\begin{equation*}
y(\theta)=|\arcsin x(\theta)|=\arcsin |x(\theta)| \tag{5.9}
\end{equation*}
$$

The phase shift depends on the polarity or sign of x, thus

$$
\omega(\theta)= \begin{cases}0, x(\theta) \geq & 0 \tag{5.10}\\ \pi, x(\theta)< & 0\end{cases}
$$

$$
\begin{equation*}
=\pi\left[\frac{-\operatorname{san} x(\theta)+1}{2}\right], \tag{array}
\end{equation*}
$$

where

$$
\operatorname{sgn} x=\left\{\begin{align*}
+1, & x>0 \tag{5.13}\\
0, & x=0 \\
-i, & x<0
\end{align*}\right.
$$

For sinusoidal modulation,

$$
\begin{equation*}
\operatorname{sgn}(\sin \theta)=s(\theta), \tag{5.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi(\theta)=\pi\left[\frac{-s(\theta)+1}{2}\right] \tag{5.15}
\end{equation*}
$$

Now

$$
\begin{aligned}
\sin (2 m+1)\left[\theta_{c}+\varphi(\theta)\right] & =\sin \left[(2 m+1) \theta_{c}+(2 m+1) \varphi(\theta)\right] \quad(5.16) \\
& =\sin \left[(2 m+1) \theta_{c}+(2 m+1) \pi\left[\frac{-\operatorname{san}(\theta)+1}{2}\right]_{1}\right]
\end{aligned}
$$

Subtracting m multiples of 2π,

$$
\begin{align*}
& =\sin \left[(2 m+1) \theta_{c}+\pi\left[\frac{s(\theta)+1}{2}\right]\right] \tag{5.18}\\
& =\operatorname{s}(\theta) \sin (2 m+1) \theta_{c} \tag{5.19}
\end{align*}
$$

The predistorted wave $y(\theta)$ then has a triangular shape:

$$
\begin{align*}
& y(\theta)=\left\{\begin{array}{l}
\arcsin \sin \theta \\
\theta, 0 \leq \theta \leq \pi / 2 \\
\pi-\theta, \pi / 2 \leq \theta \leq \pi \\
\theta-\pi, \pi \leq \theta \leq 3 \pi / 2 \\
2 \pi-\theta ; 3 \pi / 2 \leq \theta \leq 2 \pi \\
\theta-2 \pi, 2 \pi \leq \theta \leq 5 \pi / 2 \\
\cdots
\end{array}\right. \tag{5.20}
\end{align*}
$$

$$
\begin{equation*}
=\frac{\pi}{2} \cdot \frac{1}{2}(1+\Lambda(\theta))=\frac{\pi}{2} \lambda(\theta) s(\theta) \tag{5.22}
\end{equation*}
$$

Now

$$
\sin (2 m+1) y(\theta)=\left\{\begin{array}{l}
\sin (2 m+1) \theta \tag{5.23}\\
\sin [-(2 m+1) \theta+(2 m+1) \pi] \\
\sin [(2 m+1) \theta-(2 m+1) \pi] \\
\sin [-(2 m+1) \theta+(2 m+1) 2 \pi] \\
\sin [(2 m+1) \theta-(2 m+1) 2 \pi] \\
\cdot .
\end{array}\right.
$$

Subtracting multiples of 2π;

$$
\begin{align*}
& =\left\{\begin{array}{l}
\sin (2 m+1) \theta \\
\sin [-(2 m+1) \theta+\pi] \\
\sin [(2 m+1) \theta-\pi] \\
\sin [-(2 m+1) \theta] \\
\sin [(2 m+1) \theta] \\
\cdot
\end{array}\right. \tag{5.24}\\
& =\sin (2 m+1) \theta \operatorname{se}(\theta) \tag{5.25}
\end{align*}
$$

Combining (5.25) and (5.19),

$$
\begin{align*}
\sin (2 m+1) \theta s(\theta) s(\theta) & \sin (2 m+1) \theta_{c} \\
& =\sin (2 m+1) \theta \cdot \sin (2 m+1) \theta_{c} \tag{5.26}
\end{align*}
$$

or

$$
\begin{equation*}
z_{2 m+1}(\theta)=\sin (2 m+1) \theta \tag{5.27}
\end{equation*}
$$

The modulation of. the $k^{t h}$ odd harmonic of the carrier is then simply a sinusoid of k times the frequency of the sinu-. soid modulating the sarrier itself (Figure 5.1). The only spurious products generated are bandlimited and near the har-

Figure 5.1. Modulating Functions for $D S B / S C$.
monics of the carrier.
This important result can be generalized for AM and DSB signals other than DSB/SC at maximum modulation. To do this, consider the power series given by Jolley (22):

$$
\sin k \arcsin x=k x-\frac{k\left(k^{2}-1^{2}\right)}{3!} x^{3}+\frac{k\left(k^{2}-3^{2}\right)}{5!} x^{5} \ldots \quad \text { (5.28) }
$$

Since k is odd, the term containing x^{k+2} and all higher terms will contain the factor $\left(k^{2}-k^{2}\right)=0$. Thus the series terminates with x^{k}. For example,
(5.29)
and

$$
\begin{align*}
& \sin 3 \arcsin x=3 x-4 x^{3} \\
& \sin 5 \arcsin x=5 x-20 x^{3}+16 x^{5} \tag{5.30}
\end{align*}
$$

When $x(\theta)$ is composed of sinusoids and cosinusoids whose maximum frequency is ω_{x}, it is apparent that the highest product of any combination of them will be of $k^{\text {th }}$ order. Since the decomposition of $\sin ^{k} \theta$ or $\cos ^{k} \theta$ contains sinusoids and cosinusoids with arguments up to $k \theta$, it is also apparent that the spectrum of sin k arcsin x will be limited to $k \omega_{x}$.

To show that this is true for any bandimited signal, consider the convolution process which is used to determine the spectrum of a product of two time functions. Here $X_{k}(\omega)$ will denote the spectrum of $x^{k}(\theta)$ and $*$ will be used to denote convolution.

$$
\begin{align*}
& x_{2}(\omega)= x(\omega) * x(\omega) \tag{5.31}\\
&+\infty \\
&= \frac{1}{2 \pi} \int x(u) x(\omega-u) d u \tag{5.32}\\
&-\infty
\end{align*}
$$

Sine $X(\omega)$ is bandlimited according to (5.1),

$$
x_{2}(\omega)=\frac{1}{2 \pi} \int_{-\omega_{x}}^{+\omega_{x}} x(u) x(\omega-u) d u
$$

Now

$$
\begin{equation*}
x(\omega-u)=0,|\omega-u|>\omega_{x} \tag{5.34}
\end{equation*}
$$

thus
and

$$
\begin{align*}
& x(\omega-u)=0,|\omega|>2 \omega_{x} \tag{5.35}\\
& x_{2}(\omega)=0,|\omega|>2 \omega_{x} \tag{5.36}
\end{align*}
$$

Extension of this yields

$$
\begin{equation*}
x_{n}(\omega)=0,|\omega|>n \omega_{x} \tag{5.37}
\end{equation*}
$$

The spectrum of $x^{n}(\theta)$ is thus bandlimited to n times the bandwidth of $x(\theta)$. Since sin k arcsin x contains powers of x no higher than x^{k}, it is bandimited to k times the original bandwidth.

One technicality remains:

$$
\begin{aligned}
z_{k}(\theta) & =\sin k \arcsin |x(\theta)| \cdot \operatorname{sgn} x(\theta) \\
& =\left[k|x|-\frac{k\left(k^{2}-1^{2}\right)}{3!}|x|^{3}+\ldots\right] \operatorname{sgn} x(\theta)(5.38)
\end{aligned}
$$

noting that

$$
\begin{equation*}
x=|x| \operatorname{sgn} x \tag{5.39}
\end{equation*}
$$

and

$$
\begin{gather*}
|x|^{3}=x^{3} \tag{5.40}\\
z_{k}(\theta)=\sin k \arcsin x(\theta) \tag{5.41}
\end{gather*}
$$

and is therefore bandlimited. Computer simulations of the spectra of $D S B / S C$ and $A M$ signals are shown in Figures 5.2 and 5.3.

The bandimited characteristic of the inherent modulation of the harmonics of the carrier makes bipolar class D highly advantageous for $R F$ amplification. For an ideal amplifier; no overlap between the desired carrier and its sidebands and the spurious products occurs unless the highest modulation frequency is greater than half the carrier frequency. Thus for $A M, D S B$, or $S S B$ generated by interlacing or overlapping, . it is possible to remove the spurious products as completely

Figure 5.2. Spectrum of a Class D RF Amplifier.

Figure 5.3. Spectrum of a Class D RF Amplifier.
as desired. This is not the case with audio PWM, where spurious products fall in the signal bandwidth and cannot, therefore, be removed.

Unforiunately, class D SSB generation using envelope and phase modulation does not have this property. Since $\omega(\theta)$ is no longer limited to only or π, the form of $w(\theta)$ cannot be limited simply to a series of sine waves; as in (5.7). Now

$$
\begin{align*}
& \infty \\
& w(\theta)=\frac{4}{\pi} \Sigma \frac{\sin (2 m+1) y(\theta)}{2 m+1} \sin (2 m+1)\left[\theta_{c}+\varphi(\theta)\right] \\
& \mathrm{m}=1 \\
& \infty \\
& =\frac{4}{\pi} \Sigma \frac{\sin (2 m+1) y(\theta)}{2 m+1} \cos (2 m+1) \varphi(\theta) \sin (2 m+1) \theta_{c} \\
& \mathrm{~m}=0 \\
& +\sin (2 m+1) \theta(\theta) \cos (2 m+1) \theta_{c} \tag{5.43}\\
& \infty \\
& =\frac{4}{\pi} \sum \frac{1}{2 m+1}\left[z_{p 2 m+1}(\theta) \sin (2 m+1) \theta_{c}+z_{q 2 m+1}(\theta)\right. \\
& \mathrm{m}=0 \\
& \left.\cos (2 m+1) \theta_{c}\right] \tag{5.44}
\end{align*}
$$

where

$$
\begin{align*}
z_{p k}(\theta) & =\sin k y(\theta) \cos k c p(\theta) \tag{5.45}\\
z_{q y}(\theta) & =\sin k y(\theta) \sin k c p(\theta) \tag{5.46}\\
y(\theta) & =\arcsin E(\theta) \tag{5.47}\\
\varphi(\theta) & =\arctan \frac{x_{q}(\theta)}{x_{p}(\theta)} \tag{5.48}
\end{align*}
$$

$$
\begin{align*}
& \text { Consider the third harmonic of the carrier: } \\
& \cos 3 \varphi(\theta)=4 \cos { }^{3} \varphi(\theta)-3 \cos \varphi(\theta), \\
& \sin 3 \varphi(\theta)=3 \sin \varphi(\theta)-4 \sin ^{3} \varphi(\theta), \\
& \sin 3 y(\theta)=3 E(\theta)-4 E^{3}(\theta), \tag{5.51}\\
& z_{p}\{\theta)=-9 E(\theta) \cos \varphi(\theta)+12 E(\theta) \cos ^{3} \varphi(\theta) \\
&+12 E^{3}(\theta) \cos \varphi(\theta)-16 E^{3}(\theta) \cos ^{3} \varphi(\theta), \tag{5.52}\\
& z_{q} f(\theta)= 9 E(\theta) \sin \varphi(\theta)-12 E(\theta) \sin ^{3} \varphi(\theta) \\
&-12 E^{3}(\theta) \sin \varphi(\theta)+16 E^{3}(\theta) \sin ^{3} \varphi(\theta) \tag{5.53}
\end{align*}
$$

(Terms such as $E^{2 n+1}(\theta) \cos ^{2 m+1}(\theta)$ are generated for any odd harmonic.)

In the triangle of Figure 3.7, it is apparent that

$$
\begin{align*}
& E(\theta) \cos \varphi(\dot{\theta})=x_{p}(\theta) \tag{5.54}\\
& E(\theta) \sin \varphi(\theta)=x_{q}(\theta) \tag{5.55}
\end{align*}
$$

so both terms containing these factors are bandimited.
Since

$$
\begin{equation*}
E^{3}(\theta) \cos ^{3} \varphi(\theta)=x_{p}^{3}(\theta) \tag{5.56}
\end{equation*}
$$

it is bandlimited by (5.37); as is $E^{3}(\theta) \sin ^{3} c p(\theta)$.
Now

$$
\begin{equation*}
\mathrm{E}^{2}(\theta)=\mathrm{x}_{\mathrm{p}}^{2}(\theta)+\mathrm{x}_{\mathrm{q}}^{2}(\theta) \tag{5.57}
\end{equation*}
$$

and since both $x_{p}^{2}(\theta)$ and $x_{q}^{2}(\theta)$ are bandimited by (5.37), $E^{2}(\theta)$ must also be bandlimited. Now

$$
\begin{equation*}
E^{3}(\theta) \cos \varphi(\theta)=E^{3}(\theta) x_{p}(\theta) \tag{5.58}
\end{equation*}
$$

and

$$
\begin{equation*}
E^{3}(\theta) \sin \varphi(\theta)=E^{3}(\theta) x_{q}(\theta) \tag{5.59}
\end{equation*}
$$

Since both factors on the right are bandlimited; the term on the left must also be bandlimited by generalizing (5.57).

The terms remaining are

$$
\begin{equation*}
E(\theta) \cos ^{3} \varphi(\theta)=x_{p}(\theta) \cos ^{2} \varphi(\theta) \tag{5.60}
\end{equation*}
$$

and

$$
\begin{equation*}
E(\theta) \sin ^{3} \omega(\theta)=x_{q}(\theta) \sin ^{2} \varphi(\theta) \quad . \tag{5.61}
\end{equation*}
$$

The terms $\cos ^{2} \varphi(\theta)$ and $\sin ^{2} c(\theta)$ are not bandlimited. It is difficult to say much about the nature of these terms for anything other than a two-tone signal, which is equivalent to $\mathrm{DSB} / \mathrm{SC}$, and therefore yields no information.

However; it is possible to determine the nature of the discontinuities; which yields information on the asymptotic behavior of the spectra.

Since $x_{p}(\theta)$ and $x_{q}(\theta)$ are continuous, $x_{q}(\theta) / x_{p}(\theta)$ and hence $\varphi(\theta)$ are continuous; except when $E(\theta)$ is near zero (a change from 0 to 2π is not a discontinutyl. When $x_{p}(\theta)$ is zero, the arctangent function supresses the abrupi change in φ. Thus the slope is continuous and cannot change instant$1 y$ as either x_{p} or x_{q} goes through 0.

For $x_{p}(\theta)$ and $x_{q}(\theta)$ near zero;

$$
\begin{align*}
& x_{p}(\theta) \approx 0+x_{p}^{\prime}(\theta) d \theta \tag{5.62}\\
& x_{q}(\theta) \approx 0+x_{q}^{\prime}(\theta) d \theta \tag{5.63}
\end{align*}
$$

Thus

$$
\begin{equation*}
\frac{x_{q}^{\prime}(\theta)(-d \theta)}{x_{p}^{\prime}(\theta)(-d \theta)}=\frac{x_{q}^{\prime}(\theta)(d \theta)}{x_{p}^{\prime}(\theta)(d \theta)}=\frac{x_{q}^{\prime}(\theta)}{x_{p}^{z}(\theta)} \tag{5.64}
\end{equation*}
$$

The arctangent function, however, changes by π when the change in quadrant occurs (Figure 5.4).
. A change of π in φ produces a sign reversal in $\cos \varphi$ and $\sin \varphi ;$ but no change in $\cos ^{2} \varphi$ or $\sin ^{2} \varphi$,

$$
\begin{align*}
& \cos ^{2}[\varphi(\theta) \pm \pi]=[-\cos \varphi(\theta)]^{2}=\cos ^{2} \varphi(\theta) \tag{5.65}\\
& \sin ^{2}[\varphi(\theta) \pm \pi]=[-\sin \varphi(\theta)]^{2}=\sin ^{2} \varphi(\theta) . \tag{5.66}
\end{align*}
$$

Thus there are no abrupt jumps in $\sin ^{2} \varphi(\theta)$ or $\cos ^{2} \varphi(\theta)$. The derivatives of these are

$$
\begin{align*}
\frac{d}{d \theta} \cos ^{2}[\varphi(\theta)] & =-2 \cos \varphi(\theta) \sin \varphi(\theta) \frac{d \operatorname{co}(\theta)}{d \theta} \tag{5.67}\\
\frac{d}{d \theta} \sin [\varphi(\theta)] & =2 \sin _{\varphi}(\theta) \cos \varphi(\theta) \frac{d \ln (\theta)}{d \theta} \tag{5.68}
\end{align*}
$$

These equations indicate the possibility of an impulsive first derivative. Hence the spectrum must decrease asymptotically at least as fast as $1 / \mathrm{f}$ (see Bracewell (23)). One might expect these spurious products to behave somewhat similiarly to the timing error spurious products for DSB/SC (discussed later).

Simulations of the spectra of signals composed of three unsymmetrical tones and two unequal tones are shown in Figure 5.5 and 5.6. Note that neither of these signals can be construed as a DSB/SC signal. A simulation with the tones interchanged produced sideband reversals around the harmonics of the carrier (not shown). (The spurious products at approxi-

Figure 5.4. Locus of $E(\theta)$ and $\varphi(\theta)$.
mately 5 . 10^{-5} may be computer errors; see Appendix III.) In the three tone case, the ratio of the carrier frequency to modulation frequericy (α) is approximately 6.7, and spurious products are approximately 50 dB below the signal at f_{c}. For the iwo cone signal, $\alpha \approx 20$, and the spurious products are 80 $d B$ below the signal. It therefore appears that for practical values of α, splatter from the odd harmonics of f will not be serious.
B. Monopolar PWM

The spectrum of monopolar class D is of interest for two reasons: First, monopolar FFM can be implemented by simpler circuitry than bipolar PWM, since neither a negative power supply nor a negative switch position is required. Secondly, a difference in the positive and negative supply voltages can

Figure 5.5. Spectrum of a Class D RF Amplifier.

Figure 5.6. Spectrum of a class D RF Amplifier.
in ject a small monopolar pulse train in addition to the de- $:$ sired bipolar pulse train (Figure 5.7). . In the following analysis, a IV monopolar pulse train will be used; by multiplying its terms by the per cent voltage error, the spectra for a given voltage error can be found.

From (4.19), the monopolar pulse train is

$$
\begin{align*}
w(\theta)=\frac{y(\theta)}{\pi} & +\frac{2}{\pi} \sum_{m=1}^{\infty}\left[\frac{(-1)^{m}}{2 m} \sin 2 m y \cdot \cos 2 m \theta\right. \\
& \left.+\frac{(-1)^{m+1}}{2 m-1} \sin (2 m-1) y \sin (2 m-1) \theta\right]
\end{align*}
$$

which for $A M$ or $D S B / S C$ can be resolved to

$$
\begin{aligned}
w(\theta)=\frac{Y(\theta)}{\pi}+\frac{2}{\pi} \Sigma\left[\frac{z_{2 m}(\theta)}{2 m} \cdot \cos 2 m \omega_{c} t\right. \\
m=1
\end{aligned} \quad \begin{aligned}
& \left.\quad+\frac{z_{2 m-1}(\theta)}{2 m-1} \sin (2 m-1) \omega_{c} t\right] .
\end{aligned}
$$

Consider first the example of DSB/SC used for the bipolar case. As before,

$$
\begin{equation*}
\varphi(\theta)=\pi \frac{-\operatorname{sgn} x(\theta)+1}{2}=\pi \frac{-s(\theta)+1}{2} \tag{5.71}
\end{equation*}
$$

and

$$
\begin{equation*}
y(\theta)=\arcsin |x(\theta)|=\frac{\pi}{2}|\Lambda(\theta)| \tag{5.72}
\end{equation*}
$$

The odd harmonics are modulated by the same functions as in the bipolar case. However, for the even harmonics

$$
\sin 2 m y(\theta)=\left\{\begin{array}{ll}
\sin 2 m y(\theta) & 0 \leq \theta<\frac{\pi}{2} \\
\sin [-2 m \theta+2 m \pi] & , \frac{\pi \leq \theta \leq \pi}{2} \sin [2 m \theta-2 m \pi]
\end{array}, \pi \leq \theta \leq \frac{3 \pi}{2}\right.
$$

Figure 5.7. Waveform with Voltage Error.

$$
\begin{cases}\sin [-2 m \theta+(2 m-2) \pi], & \frac{3 \pi}{2} \leq \theta \leq 2 \pi \\ \sin [2 m \theta-(2 m-2) \pi], & 2 \pi \leq \theta \leq \frac{5 \pi}{2} \\ \cdot\end{cases}
$$

Removing multiples of 2π,

$$
\begin{align*}
\sin 2 m y(\theta) & =\left\{\begin{array}{l}
\sin 2 m \theta \\
\because \sin 2 m \theta \\
\sin 2 m \theta \\
-\sin 2 m \theta \\
\cdot \cdot
\end{array}\right. \tag{5.74}\\
& =\sin 2 m \theta \sin (2 \theta) \tag{5.75}
\end{align*}
$$

Now

$$
\begin{align*}
\cos 2 m\left[\theta_{c}+\varphi(\theta)\right] & =\cos \left[2 m \theta_{c}+2 m \varphi(\theta)\right] \tag{5.76}\\
& =\cos 2 m \theta_{c} \tag{5.77}
\end{align*}
$$

because $2 m \varphi(\theta)$ produces only multiples of 2π. Thus as in Figuse 5.8,

$$
\begin{equation*}
z_{2 m}(\theta)=\sin 2 m \theta s(2 \theta) \tag{5.78}
\end{equation*}
$$

The modulation functions for k even and $Y(\theta)$ have sharp

Figure 5.8. Modulation of Even Harmonics for DSB/SC.
corners, thus are not bandimited. Inclusion of the even harmonics of the carrier can thus generate non-removable splatter. Some limits on this are determined in Chapter VII.

The characteristics just determined for sinusoidal modulation can be generalized for other AM and DSB/SC signals. First note that phase shifts to reverse the polarity of the fundamental always shift the even harmonics by multiples of 2π; thus producing no effect on them.

As before, $\sin k$ arcsin x can be expanded in a series:

$$
\begin{equation*}
z_{k}(\theta)=\sin k \arcsin |x(\theta)| \tag{5.79}
\end{equation*}
$$

$$
\begin{align*}
& =k|x|-\frac{k\left(k^{3}-1^{2}\right)}{3!}|x|^{3}+\frac{k\left(k^{2}-1^{2}\right)\left(k^{2}-3^{2}\right)}{5!}|x|^{5} \ldots(5.80) \\
& \vdots \\
& =\left[k x-\frac{k\left(k^{2}-1^{2}\right)}{3!} x^{3}+\frac{k^{2}\left(k^{2}-1\right)\left(k^{2}-3^{2}\right)}{5!} x^{5} \ldots\right] \operatorname{sgn} x \tag{5.82}\\
& (581) \\
& =\sin k \arcsin x(\theta) \sin x(\theta)
\end{align*}
$$

The infinite series will not be bandimited in general, because it never terminates (k is even). When an AM signal is used, $\operatorname{sgn} x(\theta)$ will be bandlimited, but not for DSB/SC where negative modulation is involved. Simulations of the spectra of $D S B / S C$ and $A M$ generated by monopolar PWM are shown in Figures 5.9 and 5.10.

C. Saturation Voltage

Non-zero saturation voltages can also introduce spurious signals. The dominant effect, based upon observations of the prototype, is that of a saturation voltage, introducing asquare waveform, but there is also some resistive voltage drop; which adds a slight curvature (Figure 5.11).

Any exact analysis would be very complicated. However, ioy the use of several simplifying assumptions; some reasonable results can be obtained. Consider the saturated transistor characteristics shown in Figure 5.12. First, assume that the current flowing in the output is approximately the same as with no saturation voltages. The actual effect shown in (a) is difficult to handle. However, a piecewise linearization
(b) simplifies the problem. Unfortunately, the transition

Figure 5.9. Spectrum of a Class D RF Amplifier.

Figure 5.10. Spectrum of a Class D RF Amplifier.

Figure 5.11. Saturation Voltage Effects.
from one slope to another is a complicated function of the modulation funcrion.

This protiem is eliminated by the use of (c). When current flows; voltage v_{s} is obtained instantly, followed by a small increase with increasing current. The effect of the changing currerit flow is to produce a small voltage, proportional to the cutput voltage, but of opposite polarity. The only consequence of this is a slight reduction in the output, and will theresore be neglected, and the more simple model (d) used.

Under the assumptions made above, the only serious effect of saturation voltage is to generate a.square wave whose magnitude is v_{s}, with polarity opposite that of the current flowing:

$$
\begin{align*}
u_{s}(\theta) & =-v_{s} \operatorname{sgn} i_{0}(\theta) \tag{5.83}\\
& =-v_{s} \operatorname{sgn}\left[x(\theta) \sin \theta_{c}\right] \tag{5.84}
\end{align*}
$$

Figure 5.12. Saturation Effect Approximations.

$$
\begin{equation*}
=-v_{s} \operatorname{sgn} x(\theta) s\left(\theta_{c}\right) \tag{5.85}
\end{equation*}
$$

For an AM signals; $x(\theta) \geq 0$, so

$$
\begin{equation*}
\operatorname{sgn} x(\theta)=1, \tag{5.86}
\end{equation*}
$$

and

$$
\begin{align*}
u_{s}(\theta) & =-v_{s} s\left(\omega_{c} t\right) \tag{5.87}\\
& =\frac{-4 v_{s}}{\pi} \sum_{m=1}^{\infty} \frac{1}{2 m-1} \sin (2 m-1) \omega_{c} t
\end{align*}
$$

In this case, the only effect is a change in the carrier level; proportional to v_{s}; which probably will not be harmful.

However, for a DSB/SC signal, $\operatorname{sgn} x(\theta)$ changes, and intermodulation distortion results. In the case of sinusoidal modulation,

$$
\begin{equation*}
\operatorname{sgn} x(\theta)=\operatorname{sgn} \sin \theta=s(\theta), \tag{5.89}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{s}(\theta)=-v_{s} s(\theta) s\left(\omega_{c} t\right) \tag{5.90}
\end{equation*}
$$

Figure 5.13. Spurious Products due to non-zero Saturation Voltage.

Figure 5.14. Circuit Changes to Reduce Saturation Voltage Spurious Products.

The products generated fall off as $1 / f$ and occur at odd multiples of f_{x} from odd harmonics of the carrier frequency, as shown in Figure 5.13. The severity of this IMD is not reduced by reducing the modulation depth.

Depending on the severity of these products, it might
be desirable to replace the ground connection of output transistors $Q 2$ and $Q 3$ with voltages equal to v_{s}. This not only improves the efficiency slightly, but can remove most of the spurious product generated (Figure 5.14).

VI. PULSE TIMING DISTORTION

Two distortion problems peculiar to the class D RF amplifier are errors in pulse length (bias) and non-zero transition times. The primary effects of both of these problems are shown to produce intermodulation distortion.

Several assumptions will be necessary to arrive at a meaningful characterization of the spurious products. The basic method will be to add a distortion waveform $u(\theta)$, which changes the ideal waveform $w(\theta)$ to the distorted waveform $W_{D}(\theta)$. One critical assumption is that the effects of $u(\theta)$ overlapping itself for large pulse widths, and the effects of pulse deterioration for small pulse widths can be neglected. A small válue of bias of rise time will. also be assumed, when needed, since a class D amplifier with large errors would either have too much distortion or be inefficient.

When products generated by the distortion wave $u(\theta)$ have the same form as the desired signal or the distortion products already present, they will be neglected. There is very little practical difference between a spurious product $20 d B$ below the desired signal, and one which is 20.1dB below the signal. What is important is new spurious products appearing in places where there were no spurious products without the timing distortion.

A. Pulse Bias Distortion

Pulse bias distortion occurs when a pulse is transferred from one amplifier to another. In Figure 6.1, the input pulse suffers from unequal rise and fall times, and the second (output) amplifier does not cut in half way between the on and off levels of the input. As a result, the turn off transition is delayed more than the turn on transition, and the pulse is elongated.

To analyze the spurious products produced by such a procese, let the desired pulse train be distorted by lengths T_{1}. τ_{2}, τ_{3}, and T_{4}, as shown in Figure 6.2. Note that the τ_{i} are in terms of one cycle at the carrier frequency, ie., if t_{i} is the actual length of time involved,

$$
\begin{equation*}
\tau_{i}=t_{i} \frac{2 \pi}{f_{c}} \tag{6.1}
\end{equation*}
$$

INPUT

OUTPUT

> Figure 6.1. Cause of Pulse Bias.

Figure 6.2. Bias Distorion Waveform.

The distorted wave is decomnosed into the ideal wave and the distorted wave:

$$
\begin{equation*}
w_{D}=w(\theta)+u(\theta) \tag{6.2}
\end{equation*}
$$

The distortion waveform can in turn be decomposed into four waveforms:

$$
\begin{equation*}
u_{B}(\theta)=u_{B 1}(\theta)+u_{B 2}(\theta)+u_{B 3}(\theta)+u_{B 4}(\theta) \tag{6.3}
\end{equation*}
$$

Each of these four waveforms represents a monopolar pulse of constant width with posjition depending on $Y(\theta)$ and $\varphi(\theta)$. Attention will first be focused on $u_{B I}(\theta)$, and the results then extended to the other waveforms and combined. By
use of (4.12).

$$
\begin{align*}
& u_{B 1}(\theta)=f_{+}\left\{\omega_{C} t, \tau_{1}, \frac{\pi}{2}-\left[y(\theta)-\frac{\tau_{i}}{2}+\varphi(\theta)\right]\right\} \tag{6.4}\\
& \vdots \tag{6.5}\\
& =\frac{1}{2 \pi}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin \frac{n \tau_{1}}{2}}{n} \cos \left\{n \omega_{c} t-n\left[\frac{\pi}{2}-\left(y+\frac{\tau_{i}}{2}\right)+\varphi\right]\right\}
\end{align*}
$$

First approximate

$$
\begin{equation*}
\frac{\sin \frac{n \tau_{1}}{2}}{n} \approx \frac{\frac{n T_{1}}{2}}{n}=\frac{\tau_{I}}{2} \tag{6.6}
\end{equation*}
$$

this will be valid for low frequencies, but will make higher frequencies stronger than they really are. In the argument of the cosine in (6.5), approximate

$$
\begin{equation*}
\mathrm{y}+\frac{\tau_{i}}{2} \approx \mathrm{y} \tag{6.7}
\end{equation*}
$$

The cosine then takes the form

$$
\begin{aligned}
& \cos \psi=\cos \left[n \omega_{C} t-\frac{n \pi}{2}+n(y-\varphi)\right] \\
& = \begin{cases}(-1)^{\frac{n}{2}} \cos \left[n \omega_{c} t+n(y-\infty)\right] & , n \text { even } \\
(-1)^{\frac{n-1}{2}} \sin \left[n \omega_{c} t+n(y-\varphi)\right] & , n \text { odd }\end{cases} \\
& =\left\{\begin{array}{l}
(-1)^{\frac{n}{2}}\left[\cos n(y-C) \cos \omega_{C} t-\sin m(y-C D) \sin \omega_{C} t\right] \\
(-1)^{\frac{n-1}{2}}\left[\cos n(y-0) \sin \omega_{C} t+\sin n(y-0) \cos \omega_{C} t\right]
\end{array}\right.
\end{aligned}
$$

Thus the Fourier coefficients of $u_{B 2}(\theta)$ are

$$
\begin{equation*}
a_{u_{B 1} 0}(\theta)=\frac{\tau_{1}}{2 \pi} \tag{6.11}
\end{equation*}
$$

$$
\begin{align*}
& a_{u_{B 1}{ }^{n}}(\theta) \cong \frac{\tau_{i}}{\pi}\left\{\begin{array}{cl}
(-1)^{\frac{n}{2}} \cos n(y-\infty) & , n \text { even } \\
(-1)^{\frac{n-1}{2}} \sin n(y-\infty) & , n \text { odd }
\end{array}\right. \tag{6.12}\\
& b_{u_{B i}}(\theta) \cong \frac{T_{1}}{\pi}\left\{\begin{array}{lll}
-(-1) & \sin n(y-\varphi) & \text {, } n \text { even } \\
(-1) & \cos n(y-\varphi) & \text {, } n \text { odd }
\end{array}\right. \tag{6.13}
\end{align*}
$$

In the case of DSB signals, $\varphi=0$ or π, and

$$
\cos n(y-\infty)= \begin{cases}\cos n y \operatorname{sgn} x, & n \text { odd } \tag{6.14}\\ \cos n y: & n \text { even }\end{cases}
$$

and

$$
\sin n(y-\infty)= \begin{cases}\sin n y \operatorname{sgn} x, & n \text { odd } \tag{6.15}\\ \sin n y & n \text { even }\end{cases}
$$

Thus

$$
\begin{align*}
& a_{u_{B 1} n}(\theta)=\frac{\tau_{1}}{\pi} \begin{cases}(-1)^{\frac{n}{2}} \cos n y & n \text { even } \\
(-1)^{\frac{n-1}{2}} \sin n y \operatorname{sgn} x, & n \text { odd }\end{cases} \tag{6.16}\\
& b_{u_{B 1^{n}}}(\theta)=\frac{\tau_{1}}{\pi} \begin{cases}-(-1)^{\frac{n}{2}} \sin n y & , n \text { even } \\
(-1)^{\frac{n-1}{2}} \cos n y \operatorname{sgn} x, n \text { odd }\end{cases} \tag{6.17}
\end{align*}
$$

By performing similar operations on the other three bias pulses;

$$
\begin{equation*}
a_{u_{B}}{ }^{(\theta)}=\frac{\tau_{1}+\tau_{2}-\tau_{3}-\tau_{4}}{2 \pi} \tag{6:18}
\end{equation*}
$$

The changes required for (6.16) and (6.17) are as follows: For τ_{2} and $\tau_{4} ;$ replace y by $-y$.
τ_{3} and $\tau_{4} ;$ multiply whole term by -1 .

$$
\begin{equation*}
\tau_{3} \text { and } \tau_{4} ; \quad \frac{n \pi}{2} \rightarrow \frac{3 n \pi}{2}=\frac{n \pi}{2}+n \pi \tag{6.19}
\end{equation*}
$$

This multiplies terms with odd n by -1 and leaves even terms unchanged. Thus

$$
\begin{aligned}
& a_{u_{B} n}(\theta)= \begin{cases}\frac{\tau_{1}+\tau_{2}-\tau_{3}-\tau_{4}}{\pi}(-1)^{\frac{n}{2}} \cos n y & \text { n even } \\
\frac{\tau_{1}+\tau_{2}+\tau_{3}+\tau_{4}}{\pi}(-1)^{\frac{n-1}{2}} \sin n y \operatorname{sgn} x, \text { n odd }\end{cases} \\
& b_{u_{B} n}(\theta)= \begin{cases}\frac{-\tau_{1}+\tau_{2}+T_{3}-\tau_{4}}{\pi}(-1)^{\frac{n}{2}} \sin n y & (6.21) \\
\frac{T_{1}+\tau_{2}+T_{3}+\tau_{4}}{\pi}(-1)^{\frac{n-1}{2}} \cos n y \operatorname{sgn} x, & n \text { odd }\end{cases}
\end{aligned}
$$

Now

$$
\begin{equation*}
\sin (2 m-1) y \operatorname{sgn} x=z_{2 m-1}(\theta) \tag{6.22}
\end{equation*}
$$

so this tern represents only the introduction of a low-level bandlimited signal of the same spectral shape of signals produced by the ideal signal.

$$
\begin{equation*}
\sin 2 m y=\dot{z}_{2 m}(\theta) \tag{6.23}
\end{equation*}
$$

and is of the same form as modulation introduced by a voltage error or monopolar PWM.

To illustrate the significance of (6.20) and (6.21), consider DSB/SC sinusoidal modulation. From Figure 6.3, it is apparent that for odd n,

$$
\begin{equation*}
\cos n y=\cos n \theta c(\theta) \tag{6.24}
\end{equation*}
$$

so

$$
\begin{equation*}
\cos n y s(\theta)=\cos n \theta s(2 \theta) \tag{6.25}
\end{equation*}
$$

For even n ,

Figure 6.3. Modulation Functions for Timing Distortion.

$$
\begin{equation*}
\cos n y=\cos n \theta \tag{6.26}
\end{equation*}
$$

These results can be generalized for other then DSB/SC. The power series for cos k arcsin x is (see. Jolley (22))

$$
\begin{equation*}
\cos k \arcsin x=1-\frac{k^{2}}{2!} x^{2}+\frac{k^{2}\left(k^{2}-2^{2}\right)}{4!} x^{4}-\ldots \tag{6.27}
\end{equation*}
$$

When k is even, this series terminates in the term containing \mathbf{x}^{k}, since all higher order terms contain a factor of ze:o.

When k is odd, the series never terminates. Thus cos $2 m y$ is bandimited to 2 m the basic modulating frequencys and cos (2m-1)y $\operatorname{sgn} x$ is not generally bandiimited.

As discussed earlier, the slight change in the desired signal level can be neglected. Also, the introduction of a bandimited signal at the second harmonic is, although undesirable, not likely to be very harmful, since it can be removed by a filter. This leaves only the terms in (6.21) to cause harmiul interference. Different types of spurious products which can be generated are shown in Figure 6.4. Equation (6.21) can then be used to write

$$
\begin{gathered}
u_{B}(\theta) \cong \frac{u_{0_{B}}(\theta)}{2 \pi}+\frac{\sigma_{B}}{\pi} \Sigma(-1)^{m} u_{2 m-1}(\theta) \sin (2 m-1) \omega_{C} t \\
m=1 \\
\\
+\frac{\delta_{B}}{\pi} \Sigma(-1)^{m} u_{2 m}(\theta) \sin 2 m \omega_{C} t, \\
m=1
\end{gathered}
$$

where

$$
\begin{align*}
& u_{o_{B}}(\theta)=\tau_{1}+\tau_{2}-\tau_{3}-\tau_{4}, \tag{6.29}\\
& u_{2 m}(\theta)=\sin 2 m y(\theta), \tag{6.30}
\end{align*}
$$

and

$$
\begin{gather*}
u_{2 m-1}(\theta)=\cos (2 m-1) y(\theta) \operatorname{sign} x(\theta) \tag{6.31}\\
=\operatorname{sgn} x-\frac{k^{2}}{2!} x^{2} \operatorname{sgn} x+\frac{k^{2}}{4!} x^{4} \operatorname{sgn} x-\ldots \tag{6.32}\\
\sigma_{B}=\tau_{1}+\tau_{2}+\tau_{3}+T_{4} \tag{6.33}
\end{gather*}
$$

$\begin{array}{ll}\text { Non-bandlimited products } & \text { Non-bandlimited } \\ \text { at even harmonics of } f_{C} & \text { products at odd } \\ & \text { harmonics of } E_{C} .\end{array}$

Figure 6.4. Types of Spurious Products due to Pulse Bias Distortion.

$$
\begin{equation*}
\delta_{\mathrm{B}}=-\tau_{1}+T_{2}+\tau_{3}-T_{4} \tag{6.34}
\end{equation*}
$$

For monopolar F HM, all the equations remain the same, with

$$
\begin{equation*}
\tau_{3}=\tau_{4}=0 \tag{6.35}
\end{equation*}
$$

The nature of these spurious products is discussed more fully in Chapters VII and VIII. However, there are some readily made observations. First, the most harmful interference should be due to the $\operatorname{IMD}(u(\theta))$, since the other spurious products will have decayed to small values near f_{C}. Secondly, the magnitude of the MMD for a given $x(\theta)$ varies linearly with the bias error, σ_{B}. Thirdly, for $A M$ signals, $\operatorname{sgn} x(\theta)=1$, which should reduce the IMD somewhat. . The exact nature of the

TMD for SSB signals is difficult to determine without more involved study, but it should not be too different from that of DSB/SC, since both involve abrupt phase shifts. Simulations of AM and DSB generation with several levels of bias distortion are shown in Figures 6.5 and 6.6. Note that the maximum value of x was restricted so that overmodulation does not occur. Lowering the maximum value of x (modulation depth) tends to cause more rapid decay of the IMD, causing that generated by a 10% error to be smaller than that for a 1% error at a few frequencies.
B. Rise/Fall Time Distortion

An added correction waveform will again be used to dettermine the effects of non-zero rise and fall times on the spurious products of a class D amplifier (Figure 6.7). A truncated ramp rise and fall characteristic will be used for convenience. Again, the effects of overlapping and deterioration are ignored, so that

$$
\begin{equation*}
w_{D}(\theta)=w(\theta)+u_{R}(\theta) \tag{6.36}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{R}(\theta)=u_{R 5}(\theta)+u_{R 6}(\theta)+u_{R 7}(\theta)+u_{R 8}(\theta) \tag{6.37}
\end{equation*}
$$

From (4.26), (4.30), and: (4.34), which give the basic Fourier coefficients for a truncated ramp waveform,

$$
\begin{equation*}
a_{u_{R 5}}=\frac{-T_{5}}{4 \pi} \tag{6.38}
\end{equation*}
$$

Figure 6.5. Spectrum of a Class D RF Amplifier.

Figure 6.6. Spectrum of a Class D RF Amplifier.

Figure 6.7. Rise/Fall Time Distortion Waveforms.

$$
\begin{gathered}
a_{u_{R 5^{n}}}=\frac{-1}{\pi n^{2} \tau_{5}}\left[\left(\sin n \tau_{5}-n \tau_{5}\right) \sin n \lambda\right. \\
\\
\left.+\left(\cos n T_{5}\right) \cos n \lambda\right]
\end{gathered}
$$

$$
b_{u_{R 5}} n=\frac{-1}{\pi n^{2} \tau_{5}}\left[\left(1-\cos n \tau_{5}\right) \sin n \lambda\right.
$$

$$
\left.+\left(n T_{5}-\sin n T_{5}\right) \cos n \lambda\right](6.40)
$$

For small values of n,

$$
\begin{align*}
\sin n \tau-n T & =n \tau-\frac{1}{3!} n^{3} \tau^{3}+\frac{1}{5!} n^{5} \tau^{5}-\ldots-n \tau \tag{6.41}\\
& \approx-\frac{1}{3!} n^{3} \tau^{3} \tag{6.42}\\
1-\cos n \tau & =1-1+\frac{1}{2!} n^{2} \tau^{2}-\frac{1}{4!} n^{4} \tau^{4}+\ldots . \tag{6.43}
\end{align*}
$$

$$
\begin{equation*}
\approx \frac{1}{2!} \mathrm{n}^{2} \tau^{2} \tag{6.44}
\end{equation*}
$$

These reduce (6.37) and (6.38) to

$$
\begin{align*}
a_{u_{R 5}} & \approx \frac{-1}{\pi}\left[\left(-\frac{n \tau_{5}^{3}}{3!}\right) \sin n \lambda+\left(\frac{T_{5}}{2}\right) \cos n \lambda\right] \tag{6.45}\\
& \approx-\frac{T_{5}}{2 \pi} \cos n \lambda \tag{6.46}\\
b_{u_{R 5^{n}}} & \approx \frac{-1}{\pi}\left[\left(\frac{\tau_{5}}{2}\right) \sin n \lambda-\left(\frac{n \tau_{5}^{2}}{3!}\right) \cos n \lambda\right] \tag{6.47}\\
& \approx-\frac{T_{5}}{2 \pi} \sin n \lambda \tag{6.48}
\end{align*}
$$

Now for T_{5},

$$
\begin{equation*}
\lambda_{5}=\frac{\pi}{2}-(y-\varphi) \tag{6.49}
\end{equation*}
$$

so

$$
\begin{align*}
& a_{u_{R 5^{n}}}=-\frac{\tau_{5}}{2 \pi} \begin{cases}(-1)^{\frac{n}{2}} \cdot \cos n y & , n \text { even } \\
(-1)^{\frac{n-1}{2}} \cdot \sin n y \operatorname{sgn} x, & n \text { odd }\end{cases} \tag{6.50}\\
& b_{u_{R 5^{n}}}=-\frac{\tau_{5}}{2 \pi}\left\{\begin{array}{cc}
-(-1)^{\frac{n}{2}} \sin n y & n \text { even } \\
(-1)^{\frac{n-1}{2}} \cdot \cos n y \operatorname{sgn} x, & n \text { odd }
\end{array}\right. \tag{6.51}
\end{align*}
$$

The above equations have exactly the same form (except for a $-\frac{1}{2}$ factor) as (6.20) and (6.21), so the types of spurious products are the same. Noting that rise/fall correction pulses 5 and 7 have polarity opposite to bias pulses 1 and 3, (6.28) can be modified to produce

$$
\begin{gather*}
u_{R}(\theta) \approx \frac{\sigma_{R}}{4 \pi}+\frac{\sigma_{R}}{2 \pi} \sum_{m=1}^{\infty}(-1)^{m} u_{2 m-1}(\theta) \sin (2 m-1) \omega_{C} t \\
\\
+\frac{\delta_{\dot{R}}}{2 \pi} \sum_{m=1}^{\infty}(-1)^{m} u_{2 m}(\theta) \sin 2 m \omega_{C} t
\end{gather*}
$$

where $u_{k}(\theta)$ is the same as before, but

$$
\begin{align*}
& \sigma_{R}=-T_{5}+\tau_{6}+\tau_{7}-\tau_{8} \tag{6.53}\\
& \delta_{R}=\tau_{5}+\tau_{6}-\tau_{7}-\tau_{8} \tag{6.54}
\end{align*}
$$

It is interesting to note that under certain conditions, both σ_{R} and δ_{R} can be reduced to zero, hence the distortion is reduced almost to zero (until the approximations used break down). If the rise and fall times of each pulse are equal, σ_{R} $=0$, and the IMD as well as the modulation around the odd harmonics disappear. If the rise and fall times of the positive pulse are equal to the rise and fall times of the negative pulse, $\delta_{R}=0$ also, and the even harmonics disappear. In a bipolar amplifier, the positive and negative switching should be symmetrical, so δ_{R} should be small and even harmonic products should be negligible.

However, when such balances do not exist, IMD and/or splatter appear. Simulations of DSB/SC with net timing errors of $2 \pi \cdot 0.01$. are shown in Figures 6.8 and 6.9. In the former, the rise and fall times are all equal, and spurious products are slight. However, in the latter, rise times are zero

Figure 6.8. Spectrum of a Class D RF Amplifier.

Figure 6.9. Spectrum of a Class D RF Amplifier.
and all the error is in the fall time, and spurious products are worse.

It was not chance that the approximate spurious products for rise/fall distortion are exactly one-half those of bias distortion. The phase modulation is the same, regardless of the shape of the correction pulse. Thus as long as there is neither overlapping nor deterioration, the only difference for other rise/fall shapes will be a constant multiplying the same basic distortion products. The value of the constant depends upon the area of the correction pulses.

C. Approximations Used

As stated previously, it has been assumed that the correction pulses neither overlap nor deteriorate. This produces a distortion curve as shown in Figure 6.10.

The addition of bias or fall time necessitates a slight reduction in the maximum allowable value of y. If this is not done, the outpuci signai wili suffer an additional distortion due to clipping, and both the positive and negative output transistors may be on simultaneously, causing inefficiency and possibly resulting in damage to the transistors.

The abrupt transition from positive to negative used here is probably more severe than the actual case. As illustrated in Figure 6.11, an actual amplifier will have gradual transitions diue to pulse rise and fall times. The effect of this is to round the distortion curve in Figure 6.10, which

Figure 6.10. Distortion Curves.
should result in decreased distortion products.

D. Combination of Effects

A real amplifier may suffer from all of the distortion problems discussed in Chapters V and $V I$, so it is important to know hou these may be combined.

The two forms of timing distortion can be combined directly, superpositioning the correction puises of both, which results in superimposing the distortions of both. One important aspect of this is that a bias error may be introduced deliberately to compensate for $I M D$ due to rise/fall time errors. Although this may be difficult to do in an open loop system, a feedback system can be used to reduce significantly the IMD (Chapter VIII).

Voltage-error and timing-error distortions might easily be mixed by considering any cross products to be the square of

Figure 6.11. Pulse Deterioration.
two already-small parameters, and therefore negligible. If additional accuracy is needed, voltage errors may be included by replacing or for the correction pulses involved with $\left(1+v_{s}\right) \tau$. However, several approximations were used to obtain the equations contained. herein; so it is doubtful that additional accuracy could be obtained by more exact analysis of those equations.
VII. SPURIOUS PRODUCTS WITH SINUSOIDAL MODULATION

In Chapters V and $V I$, the distortion and/or spurious products caused by voltage or timing errors was characterized by functional equations. It was further shown that in the special case of DSB/SC with sinusoidal modulation, these functional equations could be reduced to relatively simple phaseshifting or chopped sinusoids or cosinusoids. This simplification allows the calculation of some upper limits on the spurious products generated.

The forms of the distortion functions are

$$
\begin{equation*}
y(\theta)=\arcsin |x(\theta)| \tag{7.1}
\end{equation*}
$$

which modulates the DC bias, and

$$
\begin{equation*}
z_{k}(\theta)=\sin k \arcsin |x(\theta)| \tag{7.2}
\end{equation*}
$$

Which modulates even harmonics of the carrier, and arises from voltage or timing errors, and

$$
\begin{equation*}
u_{k}(\theta)=\cos k \arcsin |x(\theta)| \operatorname{sgn} x(\theta) \tag{7.3}
\end{equation*}
$$

Which modulates odd harmonics of the carrier, and arises only from timing errors.

For DSB/SC modulation,

$$
\begin{equation*}
x(\theta)=\sin \theta, \tag{7.4}
\end{equation*}
$$

and as shown in (5.74) and (6.25),

$$
\begin{align*}
y(\theta) & =\frac{\pi}{4}+\frac{\pi}{4} \Lambda(2 \theta) \tag{7.5}\\
z_{k}(\theta) & =\sin k \theta s(2 \theta) \tag{7.6}
\end{align*}
$$

and

$$
\begin{equation*}
u_{k}(\theta)=\cos \mathrm{k} \theta \operatorname{s}(2 \theta) \tag{7.7}
\end{equation*}
$$

The spectra of these can be determined and used to compute the maximum amount of spurious products falling on a given frequency.

Amplitude modulation has smaller spurious products in general than $D S B / S C$, in part due to the lack of one phase. shift (sgn $x=1$ for $A M$). For $A M$ at 100% modulation,

$$
\begin{equation*}
x(\theta)=\frac{1}{2}+\frac{1}{2} \sin \theta \tag{7.8}
\end{equation*}
$$

However, an exact form for $z_{k}(\theta)$ or $u_{k}(\theta)$ is difficult (see Chapter VIII). To get a (very) crude idea. of what upper limits would be for $A M$, the $\operatorname{sgn} x$ or $|x|$ phase shifting will be ignored, although (7.3) will be used to generate manageable equations. This results in

$$
\begin{align*}
& \dot{y}(\theta)=\frac{\pi}{2} \Lambda(\theta) \tag{7.9}\\
& z_{k}(\theta)=\sin k \arcsin x(\theta) \tag{7.10}\\
&=\sin k \theta c(\theta) \tag{7.11}\\
& u_{k}(\theta)=\cos k \arcsin x(\theta) \tag{7.12}\\
&=\cos k \theta c(\theta) \tag{7.13}
\end{align*}
$$

and
each of which has half as many phase shifts as its DSB count-. erpart (Figure 7.1). The actual forms of y, z_{k}, and u_{k} for $A M$ are shown, along with the ones used for computation. It appears that the actual waveforms are more rounded, hence the limits found should exceed the actual limits.

Begin by recalling (4.24) and (4.22),

$$
-1
$$

Figure 7.1. Waveforms Used to Find Upper Limits on Spurious Products.

$$
\begin{align*}
c(\theta)= & \frac{4}{\pi}\left[\cos \theta-\frac{1}{3} \cos 3 \theta+\frac{1}{5} \sin 5 \theta \ldots\right] \tag{7.14}\\
& =\frac{4}{\pi} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{2 m+1} \cos (2 m+1) \theta
\end{align*}
$$

and

$$
\begin{align*}
s(2 \theta)= & \frac{4}{\pi}\left[\sin 2 \theta+\frac{1}{3} \sin 6 \theta+\frac{1}{5} 10 \theta+\ldots\right] \tag{7.16}\\
& \infty \\
& \frac{4}{\pi} \sum \frac{1}{2 m+1} \sin (4 m+2) \theta \quad . \tag{7.17}
\end{align*}
$$

A. Voltage Error Products

DSB/SC generated by monopolar PWM will be considered first. To apply these results to voltage errors, the spectra derived are multiplied by a normalized Δv.

Modulation of the DC component also occurs, and has the form

$$
\begin{align*}
\dddot{y}(\theta)= & \left|\frac{\pi}{2} \hat{A}(\theta)\right|=\frac{\pi}{4} \div \frac{\pi}{4} \hat{L}(2 \theta) \tag{7.18}\\
= & \frac{\pi}{4}+\frac{2}{\pi} \sum_{i=0} \frac{(-1)^{i}}{(2 i+1)^{2}} \sin (4 i+2) \theta \tag{7.19}
\end{align*}
$$

Letting I be a frequency where a spurious product may occur,

$$
\begin{equation*}
2 i+1=\frac{f}{2} \tag{7.20}
\end{equation*}
$$

A factor of $1 / \pi$ occurs in (5.69), thus the magnitude of a distartion product at frequency f is approximately

$$
\begin{equation*}
D_{0}(f)=\frac{1}{\pi} \cdot \frac{2}{\pi} \cdot \frac{1}{(f / 2)^{2}}=\frac{8}{\pi^{2}} \cdot \frac{1}{f^{2}} \tag{7.21}
\end{equation*}
$$

If the ratio of carrier frequency to modulation frequency is

$$
\begin{equation*}
\alpha=\frac{\mathrm{F}_{\mathrm{C}}}{\mathrm{~F}_{\mathrm{x}}} \tag{7.22}
\end{equation*}
$$

then the spurious producis falling near the desired signal are approximately

$$
\begin{equation*}
D_{0}\left(f_{c}\right) \approx \frac{8}{\pi^{2} \alpha^{2}} \tag{7.23}
\end{equation*}
$$

From (7.17),

$$
\begin{align*}
\sin k \theta \sin = & \frac{4}{\pi}\left[\sin k \theta \sin 2 \theta+\frac{1}{3} \sin k \theta \sin 6 \theta \ldots(7.24)\right. \\
= & \frac{2}{\pi}\left\{[\cos (k-2) \theta-\cos (k+2) \theta]+\frac{1}{3}[\cos (k-6) \theta-\right. \\
& \cos (k+6) \theta]+\frac{1}{5}[\cos (k-10) \theta-\cos (k+10) \theta] \\
& +\ldots\} . \tag{7.25}
\end{align*}
$$

When $k=2$,

$$
\begin{align*}
z_{2}(\theta) & =\frac{2}{\pi}\left\{1-\cos 4 \theta+\frac{1}{3} \cos 4 \theta-\frac{1}{3} \cos 8 \theta+\ldots\right\}(7.26) \\
& =\frac{2}{\pi}\left\{1-\left(1-\frac{1}{3}\right) \cos 4 \theta-\left(\frac{1}{3}-\frac{1}{5}\right) \cos 8 \theta-\ldots\right\}(7.27) \\
& =\frac{2}{\pi}\left\{1-\frac{2}{1 \cdot 3} \cos 4 \theta-\frac{2}{3 \cdot 5} \cos 8 \theta-\ldots\right\}(7.28) \tag{7.28}
\end{align*}
$$

The terms for $k=2$ show an assymptotic $1 / f^{2}$ decay, a similar result holds for other values of k. Consider the coefficient of $\cos m \theta$ where m is large; contributions come from the i th and $j^{\text {th }}$ terms such that

$$
\begin{equation*}
m=4 j+2-k=4 i+2+k \tag{7.29}
\end{equation*}
$$

Then

$$
\begin{equation*}
2 j+l=\frac{m+k}{2} \tag{7.30}
\end{equation*}
$$

and

$$
\begin{equation*}
2 i+1=\frac{m-k}{2} \tag{7.31}
\end{equation*}
$$

Now

$$
\begin{align*}
c_{\mathrm{km}} & =\left|-\frac{1}{2 j+1}+\frac{1}{2 i+1}\right| \frac{2}{\pi} \tag{7.32}\\
& =\frac{2}{\pi}\left|-\frac{2}{m+k}+\frac{2}{m-k}\right| \tag{7.33}\\
& =\frac{4}{\pi}\left|\frac{-m+k+m+k}{(m+k)(m-k)}\right| \tag{7.34}\\
& =\frac{8}{\pi}\left|\frac{k}{m^{2}-k^{2}}\right| \tag{7.35}
\end{align*}
$$

Modulation of the $k^{\text {th }}$ harmonic causes two sidebands to appear, halving the magnitude of the product $\left(D_{k}\right)$ at any given frequency. However, foldover contributes an additional product (D_{k}^{R}). There is also a constant of $2 / \pi k$ for the $k \frac{\text { th }}{}$ harmonic (Figure 7.2). Thus

$$
\begin{align*}
D_{k} & =\frac{2}{\pi k} \cdot \frac{8 k}{\pi\left|m^{2}-k^{2}\right|} \cdot \frac{1}{2} \tag{7.36}\\
& =\frac{8}{\pi^{2}} \cdot\left|\frac{1}{m^{2}-k^{2}}\right| \tag{7.37}
\end{align*}
$$

Frequency differences of $\mathrm{kf}_{\mathrm{c}}-\mathrm{E}$ and $\mathrm{Kf}_{\mathrm{c}}+\mathrm{f}$ apply to the direct and foldover products, respectively, so

$$
\begin{equation*}
D_{k}(f)=\frac{8}{\pi^{2}} \frac{1}{\left|\left[\left(k f_{c}-f\right) \frac{a}{f_{c}}\right]^{2}-k^{2}\right|} \tag{7.38}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{k}^{\prime}(f)=\frac{8}{\pi^{2}} \frac{1}{\left|\left[\left(k f_{c}+f\right) \frac{\alpha}{f_{c}}\right]^{2}-k^{2}\right|} \tag{7.39}
\end{equation*}
$$

When $f=f_{c}$,

Figure 7.2. Spurious Products at a Given Frequency.

$$
\begin{equation*}
k f_{c} \pm f=(k \pm 1) f_{c} \tag{7.40}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{k}\left(E_{C}\right)=\frac{8}{\pi^{2}}\left|\frac{1}{(k-1)^{2} \alpha^{2}-k^{2}}\right| \tag{7.41}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{k}^{\prime}\left(f_{c}\right)=\frac{8}{\pi^{2}}\left|\frac{1}{(k+1)^{2} \alpha^{2}-k^{2}}\right| \tag{7.42}
\end{equation*}
$$

By assuming that all products add, the worst case spurious product at a given frequency can be determined:

$$
\begin{gather*}
D(f)=D_{0}(f)+\Sigma\left[D_{k}(f)+D_{k}^{\prime}(f)\right] \tag{7.43}\\
k=2,4 \ldots
\end{gather*}
$$

When $f=f_{C}$, a numerial answer can be obtained easily by dropping the $-k^{2}$ in the denominators of (7.41) and (7.42):

$$
\begin{align*}
& D\left(f_{c}\right)=\frac{8}{\pi^{2} \alpha^{2}}\left\{1+\Sigma \frac{1}{(k-1)^{3}}+\frac{1}{(k+1)^{2}}\right\} \tag{7.44}\\
& k=2,4, \ldots \\
&=\frac{8}{\pi^{2} \alpha^{2}}\left\{1+\Sigma \frac{1}{m^{2}}+\Sigma \frac{1}{m^{2}}\right\} \tag{7.45}\\
& m=1,3, \ldots m=3,5, \ldots \\
&=\frac{16}{\pi^{2} \alpha^{2}} \Sigma \frac{1}{m^{2}}=\frac{16}{\pi^{2} \alpha^{2}} \cdot \frac{\pi^{2}}{8}=\frac{2}{\alpha^{2}}, \tag{7.46}\\
& m=1,3,5, \ldots
\end{align*}
$$

(by use of \#339 from (22)). To reduce the maximum spurious level to -80 dE below one of the desired sidebands of a monopolar generated signal,

$$
\begin{align*}
& \alpha^{2} \geq 2 \cdot \pi \cdot 10^{+4} \text {, or } \tag{7.47}\\
& \alpha \geq 250 \tag{7.48}
\end{align*}
$$

For other frequencies, a summation can be carried out as above, but numerical evaluation is easier. Since the terms decrease as $1 / \mathrm{s}^{2}$, 32 terms will result in an error of approximately $.001 \approx 1 / 32^{2}$. plots of D vs for $\alpha=10$, 100, and 1000 are shown in Figure 7.3. For reasonable values of α, the limit on the spurious products is nearly constiant near f_{c}. The procedure for an AM-like signal is the same.

$$
\begin{gather*}
Y(\theta)=\frac{\pi}{2} \Lambda(\theta) \tag{7.49}\\
=\frac{4}{\pi} \sum_{i=0}^{\infty} \frac{(-1)^{i}}{(2 i+1)^{2}} \sin (2 i+1) \theta \\
D_{0}(f)=\frac{4}{\pi} \cdot \frac{1}{\mathbf{x}^{2}} \tag{7.50}\\
z_{k}(\theta)=\sin k \theta c(\theta) \\
=\frac{4}{\pi}\left\{\sin k \theta \cos \theta-\frac{1}{3} \sin k \theta \cos 3 \theta+\cdots\right\} \tag{7.51}\\
=\frac{2}{\pi}\left\{[\sin (k+1) \theta+\sin (k-1) \theta]-\frac{1}{3}[\sin (k+3) \theta\right. \tag{7.52}\\
z_{i}(\theta)=\frac{2}{\pi}\left\{[\sin 3 \theta+\sin \theta]-\frac{1}{3}[\sin 5 \theta-\sin \theta] \ldots\right\} \tag{7.53}\\
= \\
\frac{2}{\pi}\left\{\left(1+\frac{1}{3}\right) \sin \theta+\left(1-\frac{1}{3}\right) \sin 3 \theta+\left(-\frac{1}{3}+\frac{1}{7}\right) \sin 5 \theta\right. \tag{7.54}
\end{gather*}
$$

Figure 7.3. Maximum Spurious Products for
Monopolar $D S B / S C$.

$$
\begin{align*}
& \left.+\left(\frac{1}{5}-\frac{1}{9}\right): \sin 7 \theta+\cdots\right\} \tag{7.56}\\
=\frac{8}{\pi}\left\{\frac{1}{3} \sin \theta+\frac{1}{1 \cdot 5} \sin 3 \theta\right. & -\frac{1}{3 \cdot 7} \sin 5 \theta \\
& \left.+\frac{1}{5 \cdot 9} \sin 7 \theta-\ldots\right\} \tag{7.57}\\
c_{k m}= & \frac{2}{\pi}\left|\frac{1}{m-k}-\frac{1}{m+j k}\right| \tag{7.58}\\
= & \frac{2}{\pi}\left|\frac{m+k-m+k}{m^{2}-k^{2}}\right|=\frac{4}{\pi}\left|\frac{k}{m^{2}-k^{2}}\right| \tag{7.59}
\end{align*}
$$

At this point it becomes apparent that since D_{0} and $C_{k m}$ are half of their equivalents for $D S B / S C$, the maximum spurious limits will be half those for $\mathrm{DSB} / \mathrm{SC}$. Thus for $A M, \alpha \geq 177$ should keep the spurious products -80 dB from the carrier.
B. Timing Error Products

As discussed in Chapter VI_{s} timing error spurious products canlbe divided into two types: IMD and background. The determination of upper limits for timing error products is, however, complicated somewhat by their non-linear dependence on the timing exror paramenter σ.

The simplifying assumption used in (6.6) that

$$
\begin{equation*}
\frac{\sin \frac{n \tau_{i}}{2}}{n} \approx \frac{\tau_{i}}{2} \tag{7.60}
\end{equation*}
$$

must be dropped. It eliminates one factor of $1 / n$ in the summation to determine background products, and the remaining terms contain only a factor of $1 / n$, and are therefore not summable. Using $\sin \frac{n T j}{2}$ produces summable terms, but the magni-
tude may vary both up and down with changes in τ, making upper limits difficult to find. Replacement of $\sin \frac{n T_{i}}{2}$ by 1 produces an upper limit, but eliminates all dependence on τ.

The use of the piecewise clipping function

$$
\dot{g}(x)=\left\{\begin{array}{l}
x, x<1 \tag{7.61}\\
1, x \geq 1
\end{array}\right.
$$

can eliminate this problem by allowing the lower frequency terms to depend on. T, while preventing decreases in the higher frequency terms.

For a DSB/SC signal,

$$
\begin{align*}
u_{k}(\theta)= & \cos k \theta s(2 \theta) \tag{7.62}\\
= & \frac{4}{\pi}\left\{\cos k \theta \sin 2 \theta+\frac{1}{3} \cos k y \sin 6 \theta+\ldots\right\} \tag{7.63}\\
= & \frac{2}{\pi}\left\{[\sin (k+2) \theta-\sin (k-2) \theta]+\frac{1}{3}[\sin (k+6) \theta-\right. \\
& \sin (k-6) \theta]+\frac{1}{5}[\sin (k+10) \theta-\sin (k-10) \theta] \\
& +\cdots\}
\end{align*}
$$

For the IMD,

$$
\begin{align*}
& u_{1}(\theta)=\frac{2}{\pi}\left\{[\sin 3 \theta+\sin \theta]+\frac{1}{3}[\sin 7 \theta+\sin 5 \theta]\right. \\
&\left.+\frac{1}{5}[\sin 11 \theta+\sin 9 \theta]+\ldots\right\} \tag{7.65}
\end{align*}
$$

None of the terms above is the same frequency, so no cancellation can occur, and decay is slow (1/f). For large m,

$$
\begin{equation*}
c_{k f} \approx \frac{2}{\pi} / \frac{f}{2}=\frac{4}{m \pi} \tag{7.66}
\end{equation*}
$$

This gives IM products of the form

$$
\begin{align*}
I(f) & \approx \frac{\sigma}{\pi} \cdot \frac{4}{m \pi} \cdot \frac{1}{2} \tag{7.67}\\
& =\frac{2 \sigma}{\pi^{2}} \frac{\therefore 1}{\left|f_{c}-f\right| \cdot \frac{\alpha}{f_{c}}} \tag{7.68}
\end{align*}
$$

Assume that the errors are evenly distributed, i.e.,

$$
\begin{equation*}
\tau_{i}=\frac{\sigma}{4} \tag{7.69}
\end{equation*}
$$

Thus

$$
\begin{align*}
\mathrm{B}_{k}(f) & =\frac{4 g\left(\frac{\sigma}{4}\right)}{k \pi} \cdot \frac{4}{\pi} \frac{1}{\mid k f_{c}^{-f \mid}} \cdot \frac{1}{2} \tag{7.70}\\
& =\frac{8 g\left(\frac{\sigma}{4}\right)}{\pi} \frac{1}{k\left|k f_{c}-f\right|} \tag{7.71}
\end{align*}
$$

and

$$
\begin{equation*}
B_{k}^{\prime}(f)=\frac{8 g\left(\frac{\sigma}{4}\right)}{\pi} \cdot \frac{1}{k\left|K F_{c}+f\right|} \tag{7.72}
\end{equation*}
$$

The maximum product is then

$$
\begin{gathered}
B(f)=B_{i}^{\prime}(f)+\sum\left[B_{k}(f)+B_{k}^{\prime}(f)\right] \\
k=3,5, \ldots
\end{gathered}
$$

Numerical evaluation of (7.68) and (7.73) was performed, for various values of σ and α, and the results are displayed in Figure 7.4. Note the approximately linear relationships between $B(f)$ and σ and $1 / \alpha$. It can be seen that near the carrier frequency, $I(f)$ dominates $B(f)$.

For an AM-like signal,

$$
\begin{align*}
u_{k}(\theta) & =\cos k \theta c(\theta) \tag{7.74}\\
& =\frac{4}{\pi} \cos k \theta\left[\cos \theta-\frac{1}{3} \cos 3 \theta+\frac{1}{3} \cos 5 \theta-\ldots(7.75)\right.
\end{align*}
$$

$A=D S B / S C$ SIGNAL
$B: I, \quad \sigma / 2 \pi=0.1$
$C: I, \quad \sigma / 2 \pi=0.01$
$D=I, \quad \sigma / 2 \pi=0.001$
$E=B, \quad \alpha=10, \quad \sigma / 2 \pi=0.1$
F: $B, \alpha=10, \quad \sigma / 2 \pi=0.01$
G: $B, \alpha=10, \quad \sigma / 2 \pi=0.001$
$H: B, \alpha=100, \sigma / 2 \pi=0.1$
I: B, $\alpha=100, \sigma / 2 \pi=0.01$
J: $B, \alpha=100, \sigma / 2 \pi=0.001$
K: B, $\alpha=1000, \sigma / 2 \pi=0.1$
L: B, $\alpha=1000, \sigma / 2 \pi=0.01$

Figure 7.4. Maximum Spurious Products for Bipolar DSB/SC with Various Timing Errors.

$$
\begin{align*}
=\frac{2}{\pi}\{[\cos (k+1) \theta+\cos (k-1) \theta] & -\frac{1}{3}[\cos (k+3) \theta+\cos (k-3) \theta] \\
& +\ldots\} \tag{7.76}\\
u_{i}(\theta)= & \frac{2}{\pi}\left\{[\cos 2 \theta+1]-\frac{1}{3}[\cos 4 \theta+\cos 2 \theta]+\ldots\right\} \\
= & \frac{2}{\pi}\left\{1+\left(1-\frac{1}{3}\right) \cos 2 \theta-\left(\frac{1}{3}-\frac{1}{5}\right) \cos 4 \theta+\ldots(77)\right. \\
= & \frac{2}{\pi}+\frac{4}{\pi}\left\{\frac{1}{1 \cdot 3} \cos 2 \theta-\frac{1}{3 \cdot 5} \cos 4 \theta+\ldots\right\}(7.79)
\end{align*}
$$

The AM-like signal has a $1 / f^{2}$ decay, thus

$$
\begin{align*}
c_{k m} & =\frac{2}{\pi}\left|\frac{1}{m-k}-\frac{1}{m+k}\right| \tag{7,80}\\
& =\frac{2}{\pi}\left|\frac{m+k-m+k}{(m-k)(m+k)}\right|=\frac{4}{\pi}\left|\frac{k}{m^{2}-k^{2}}\right| \tag{7.81}
\end{align*}
$$

The IMD then has the form

$$
\begin{align*}
I(f) & =\frac{\sigma}{\pi} \cdot \frac{4}{\pi} \cdot\left|\frac{1}{m^{2}-1}\right| \cdot \frac{1}{2} \tag{7.82}\\
& =\frac{2 \sigma}{\pi^{2}} \cdot\left|\frac{1}{m^{2}-1}\right| \tag{7.83}\\
& =\frac{2 \sigma}{\pi^{2}} \frac{1}{\left|\left[\left(\mathrm{f}_{c}-f\right) \frac{\alpha}{f_{c}}\right]^{2}-1\right|} \tag{7.84}
\end{align*}
$$

As before,

$$
\begin{align*}
\mathrm{B}_{\mathrm{k}}(f) & =\frac{4 g\left(\frac{\sigma}{4}\right)}{k \pi} \cdot \frac{4}{\pi}\left|\frac{k}{m^{2}-k^{2}}\right| \cdot \frac{1}{2} \tag{7.85}\\
& =\frac{8 g\left(\frac{\sigma}{4}\right)}{\pi^{2}} \frac{1}{\left|\left(k f_{c}+f\right)^{2}\left(\frac{\alpha}{f_{c}}\right)^{2}-k^{2}\right|} \tag{7.86}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{B}_{\mathrm{k}}^{\mathrm{e}}(\mathrm{f})=\frac{8 g\left(\frac{\sigma}{4}\right)}{\pi^{2}} \frac{1}{\left|\left(k f_{c}+f\right)^{2}\left(\frac{\alpha}{f_{c}}\right)^{2}-k^{2}\right|} \tag{7.87}
\end{equation*}
$$

A: AM-Like Signal
B: $I, \sigma / 2 \pi=0.1$
C: $I, \quad \sigma / 2 \pi=0.01$
D: $I, \sigma / 2 \pi=0.001$

$$
\begin{array}{lll}
\mathrm{E}: ~ & B, & \alpha=10, \\
\mathrm{~F}: ~ & \sigma, 2 \pi=0.1 \\
\mathrm{G}: & \alpha=10, & \sigma / 2 \pi=0.01 \\
\mathrm{H}: & \mathrm{B}, & \alpha=10, \\
& =102 \pi=0.001 \\
& \sigma / 2 \pi=0.1
\end{array}
$$

Figure 7.5. Maximum Spurious Products for Bipolar AM-Like Signal with Various Timing Errors.

Numerical evaluation of (7.86) and (7.87) was performed as for $\mathrm{DSB} / \mathrm{SC}$, and the results are shown in Figure 7.5. Note that the $B(f)$ are still approximately linearly related to σ, but now decrease according to α^{2}. Again, $I(f)$ dominates near f_{c}.

VIII. SPURIOUS PRODUCTS FOR GENERAL CASE

It would be useful to have general expressions such as

$$
u_{k}(\theta)=a_{u_{k} 0}+\sum_{n=1}^{\infty}\left[a_{u_{k} n} \cos n \theta+b_{u_{k} n} \sin n \theta\right]
$$

for a general modulating function

$$
x(\theta)=a_{x 0}+\sum_{n=1}^{N}\left[a_{x n} \cos n \theta+b_{x n} \sin n \theta\right] .
$$

Unfortunately, such formulae are not easily obtainable .
There are several basic relationships which may be used to attack this problem: (I)Power series for the distortion functions ((22), 抽845 and \#841):

$$
\begin{gathered}
\cos k \arcsin x=1-\frac{k^{2}}{2!} x^{2}+\frac{k^{2}\left(k^{2}-2^{2}\right)}{4!} x^{4}-\ldots(8.3) \\
\sin \arcsin x=k x-\frac{k\left(k^{2}-1^{2}\right)}{3!} x^{3}+\frac{k\left(k^{2}-1^{2}\right)\left(k^{2}-3^{2}\right)}{5!} x^{5} \ldots
\end{gathered}
$$

(2) Binomial and multinomial theorems:

$$
\begin{gather*}
\left(x_{1}+x_{2}\right)^{n}=x_{1}^{n}+n x_{1}^{n-1} x_{2}+\cdots+\left(\frac{n}{k}\right) x_{1}^{n-k} x_{2}^{k}+\cdots+x_{2}^{n} \\
\left(x_{1}+\cdots+x_{m}\right)^{n}=\Sigma \cdots \quad n!\prod_{1}^{m-1} \frac{x_{j}^{n} j}{n_{j}^{l}} \tag{8.6}\\
n_{1}, n_{2}, \ldots, n_{m} .{ }_{j=0}
\end{gather*}
$$

where

$$
\begin{align*}
& \mathrm{m} \\
& \Sigma \mathrm{n}_{\mathrm{i}}=\mathrm{n} \tag{8.7}
\end{align*}
$$

$$
i=1
$$

and ${ }_{n_{1}}, \ldots n_{m}$ indicates the sum of all possible unique combinations.
(3)Trigonometric expansions of powers of sine and cosine ((22), \#654, 655, 652, and 653):

$$
\begin{align*}
& \sin ^{2 n} \theta=\frac{(-1)^{n}}{2^{2 n-1}}\left[\cos 2 n \theta-\binom{2 n}{1} \cos (2 n-2) \theta+\right. \\
& \left.\binom{2 n}{2} \cos (2 n-4) \theta+\cdots+(-1) \frac{n 1}{2}\binom{2 n}{2}\right] \tag{8.8}\\
& \sin ^{2 n+1}=\frac{(-1)^{n}}{2^{2 n}}\left[\sin (2 n+1) \theta-\binom{2 n+1}{1} \sin (2 n-1) \theta+\right. \\
& \left.\binom{2 n+1}{2} \sin (2 n-3) \theta+\ldots+(-1)^{n}(\underset{n}{2 n+1}) \sin \theta\right] \tag{8.9}\\
& \cos ^{2 n} \theta=\frac{1}{2^{2 n-1}}\left[\cos 2 n \theta+\binom{2 n}{I} \cos (2 n-2) \theta+\right. \\
& \left.\binom{2 n}{2} \cos (2 n-4) \theta+\ldots+\frac{1}{2}\binom{2 n}{n} \cos \theta\right](8.10) \\
& \cos ^{2 n+1} \theta=\frac{1}{2^{2 n}}\left[\cos (2 n+1) \theta+\binom{2 n+1}{i} \cos (2 n-1) \theta+\right. \\
& \left.\ldots+\binom{2 n+1}{n} \cos \theta\right] \text {. } \tag{8.11}
\end{align*}
$$

Combinations of the above result in very awkward expression, as will be shown. The clipping effects of $\operatorname{sgn} x(\theta)$ add further complications. However, some basic relationships can be derived.

A recursive relationship can be used to convert cos arc$\sin x=u_{1}(\theta)$ to other distortion functions: For example $\sin 2 \arcsin x=2 \sin \arcsin x \cos \arcsin x$ (8.12) $=2 x \cos \arcsin x$,
and

$$
\begin{align*}
\cos 3 \arcsin x= & \cos 2 \arcsin x \cos \arcsin x \\
& +\sin 2 \arcsin x \sin \arcsin x(8.14) \\
= & \left(1-\frac{\left(1-2^{2}\right)}{2} x^{2}\right) \cos \arcsin x \\
& \cdots 2 x(\cos \arcsin x) x \tag{8.15}\\
= & \left(1+\frac{7}{2} x^{2}\right) \cos \arcsin x \quad \tag{8.16}
\end{align*}
$$

This process can be continued to as high an order as desired. The power series expansions can be used to show the effects of varying modulation depths. Let

$$
\begin{equation*}
x(\theta)=b \sin n \theta \tag{8.17}
\end{equation*}
$$

where

$$
\begin{equation*}
0 \leq b \leq 1 \tag{8.18}
\end{equation*}
$$

Then

$$
\begin{align*}
\cos k \arcsin x= & 1-\frac{\dot{k}^{2} b^{2} \sin ^{2} n \theta}{2!}+\frac{k^{2}\left(k^{2}-2^{2}\right) b^{4} \sin ^{4} n \theta}{4!}-\ldots(8.19) \\
= & 1 \\
& -\frac{k^{2} b^{2}}{2!2}\left[\frac{2!}{2(1!)^{2}}-\cos 2 n \theta\right] \\
& +\frac{k^{2}\left(k^{2}-2^{2}\right) b^{4}}{4!2^{3}}\left[\frac{4!}{2(2!)^{2}}-4 \cos 2 n \theta+\cos 4 n \theta\right] \\
& +\ldots \tag{8.20}\\
= & {\left[1-\left(\frac{k^{2}}{2!2} \frac{2!}{\left.2(1!)^{2}\right)}+\left(\frac{k^{2}\left(k^{2}-2^{2}\right) 4!}{\left.4!2^{3} 2(2!)^{2}\right)} b^{4}-\ldots\right]\right.\right.} \\
+ & b^{2}\left[\frac{k^{2}}{2!2}-\frac{k^{2}\left(k^{2}-2^{2}\right) 4 b^{2}}{4!2^{3}}+\ldots\right] \cos 2 n \theta \\
+ & b^{4}\left[\frac{k^{2}\left(k^{2}-2^{2}\right)}{4!2^{3}}-\ldots\right] \cos 4 n \theta \\
& +\ldots \tag{8.21}
\end{align*}
$$

It is apparent that $\cos m n \theta$ is multiplied by $b^{n}, n \geq m$, and hence must decrease at least as fast as b^{m} as b is decreased. This effect is shown in Figure 8.1. If $x(\theta)$ also contains lower frequencies, the results are the same, since the highest frequency term produced contains b^{m} or a higher power.

Simulations of the spectrum generated by monopolar PWM for $A M$ and $D S B / S C$ signals are shown in Figures 8.2 and 8.3, with the modulation reduced to half of its maximum depth. For $\mathrm{DSB} / \mathrm{SC}$, spurious products drop 19.2 dB near the carrier; for $A M, 87 \mathrm{~dB}$.

Simulations of a 1% bias error are shown in Figures 8.4 and 8.5. An IMD reduction of 9.4 dB (compared to the desired sidebands) can be observed for the AM signal. However, for the $D S B / S C$ signal, the IM to sideband ratio increases 2.4 AB (although the actual IMD magnitude decreases). The cause of this is that the bias correction pulses $\left(u_{B}(\theta)\right)$ still suffer abrupt phase shifts according to $\operatorname{sgn} x(\theta)$. Thus decrease of signal magnitude does not help IMD much for $D S B / S C$ (or $S S B$).

The method of finding the spectrum of a distortion function will be illustrated for $u_{1}(\theta)$ of an AM modulating signal:

$$
\begin{gather*}
x(\theta)=\frac{1}{2}(1+\sin \theta) \tag{8.22}\\
x^{2}(\theta)=\frac{1}{2^{2}}\left(1+2 \sin \theta+\sin ^{2} \theta\right) \tag{8.23}
\end{gather*}
$$

etc. Then substitution into (8.3) produces

Figure 8.1. Variation of Spurious Products with Depth of Modulation.

$$
\begin{aligned}
& u_{i}(\theta)=1-\frac{1}{22^{2}}\left(1+2 \sin \theta+\sin ^{2} \theta\right) \\
& +\frac{(1-2)}{4!2^{4}\left(1+4 \sin \theta+6 \sin ^{2} \theta+4 \sin ^{3} \theta+\sin ^{4} \theta\right)} \\
& -\frac{\left(1-2^{2}\right)\left(1-4^{2}\right)}{6!}\left(1+6 \sin \theta+\frac{6 \cdot 5}{1 \cdot 2} \sin ^{2} \theta\right) \\
& \left.+\frac{6 \cdot 5 \cdot 4}{1 \cdot 2 \cdot 3} \sin ^{3} \theta+\frac{6 \cdot 5}{1 \cdot 2} \sin ^{4} \theta+\frac{6 \cdot 5}{1 \cdot 2} \sin ^{5} \theta+\sin ^{6} \theta\right) \\
& \div \text {... (8.24) } \\
& =\left[1-\frac{1}{2!2^{2}}+\frac{\left(1-2^{2}\right)}{2^{4}: 4!}-\frac{\left(1-2^{2}\right)\left(1-4^{2}\right)}{2^{6}}+\frac{\left(1-2^{2}\right)\left(1-4^{2}\right)\left(1-6^{2}\right)}{2^{8}}\right. \\
& +\left[0-\frac{1}{2!2^{2}}\binom{2}{1}+\frac{\left(1-2^{2}\right)}{4!2^{4}}\binom{4}{1}-\frac{\left(1-2^{2}\right)\left(1-4^{2}\right)}{6!}\binom{6}{1}+\ldots\right] \sin \theta \\
& +\left[0-\frac{1}{2!2^{2}}\binom{2}{2}+\frac{\left(1-2^{2}\right)}{4!2^{4}}\binom{4}{2}-\frac{\left(1-2^{2}\right)\left(1-4^{2}\right)}{61}\binom{6}{2}+\ldots\right] \sin ^{2} \theta \\
& +\left[0+0+\frac{\left(1-2^{2}\right)}{4!2^{4}}\binom{4}{3}-\frac{\left(1-2^{2}\right)\left(1-4^{2}\right)}{6!}\binom{6}{3}+\ldots\right] \sin ^{3} \theta
\end{aligned}
$$

Figure 8.2. Spectrum of a Class D RF Amplifier.

Figure 8.3. Spectrum of a Class D RF Amplifier.

Figure 8.4. Spectrum of a Class D RF Amplifier.

$$
\begin{align*}
& +\left[0+0+\frac{\left(1-2^{2}\right)}{4!2^{4}}\binom{4}{4}-\frac{\left(1-2^{2}\right)\left(1-4^{2}\right)}{6!}\binom{6}{4}+\ldots\right] \sin ^{4} \theta \\
& +\cdots \tag{8.25}\\
& =\eta_{0}+\eta_{1} \sin \theta+\eta_{2} \sin ^{2} \theta+\ldots
\end{align*}
$$

(The above also could have been obtained by a Taylor series . expansion.)

The decompositions of powers of sine and cosine are then used to produce

$$
\begin{align*}
u_{1}(\theta) & =\eta_{0}[1] \\
& +\eta_{1}[\quad \sin \theta] \\
& +\eta_{2} \frac{(-1)}{2}\left[\frac{-1}{2}\left(\frac{2}{1}\right)+\cos 2 \theta\right] \\
& +\eta_{3} \frac{1}{2^{2}}\left[-\left(\frac{3}{1}\right) \sin \theta \quad+\sin 3 \theta\right] \\
& +\eta_{4} \frac{1}{2^{3}}\left[\frac{1}{2}\binom{4}{2}-\binom{4}{1} \cos 2 \theta\right. \\
& +\ldots \tag{8.27}
\end{align*}
$$

Thus

$$
\begin{align*}
& a_{u 0}=\eta_{0}+\frac{1}{2^{2}}\binom{2}{1} \eta_{2}+\frac{1}{2^{4}}\binom{4}{2} \eta_{4}+\cdots \\
& a_{u 1}=\eta_{1}-\frac{1}{2^{2}}\left(\frac{3}{1}\right) \eta_{3}+\frac{1}{2^{4}}\left(\frac{5}{2}\right) \eta_{5}+\cdots \\
& a_{u 2}=-\frac{1}{2} \eta_{2}-\frac{1}{2^{3}}\left(\frac{4}{1}\right) \eta_{4}-\frac{1}{2^{5}}\binom{6}{2} \eta_{6}+\ldots \tag{8.28}
\end{align*}
$$

etc.
The equations above work, but due to the infinite sums involving other infinite sums, are very difficult to evaluate. Introduction of variable carrier level and modulation depth
can further complicate the situation.
It seems that expressions for the spurious product spectrum for a general modulating signal are too general to be useful (without more work). Some work on the spectrum of an FM signal with a general modulating signal has been done (24), but results are still general.

The above results apply only to AM signals. For DSB signals, $\operatorname{sgn} x(\theta)$ has to be decomposed, and then multiplied with power series results. Possibly the most practical way to attack this problem would be to use a polynomial approximation for $\cos y \operatorname{sgn} x$. Such an approximation might actually come closer to the actual situation, since it would, in a sense, introduce pulse deterioration rather than abrupt polarity reversals.

Finally, for single sideband signals, substitutions replacing

$$
\begin{equation*}
g(\theta) \operatorname{sgn} x(\theta) \sin \omega_{c} t \tag{8.29}
\end{equation*}
$$

with

$$
\begin{equation*}
g(\theta)\left[\cos \phi(\theta) \sin \omega_{c} t+\sin \varphi(\theta) \cos \omega_{c} t\right] \tag{8.30}
\end{equation*}
$$

must be used. Again, without further work, (8.30) has little meaning.

In Chapter v it was suggested that a single tone at the highest frequency used (two tones for $S S B$) produced a severe test of the system, since all the energy is packed at the edge of the band. While qualitatively this seems correct, it must

Figure 8.6. Spectrum of a Class D RF Amplifier.

Figure 8.7. Spectrum of a Class D RF Amplifier.
be applied with caution. For example, a two-tone (equal magnitude) test of an $S S B$ class D transmitter might produce small spurious products. Introduction of a third tone (with corresponding decreases in the other two to prevent overmodulation), can result in spurious products ir its frequency is not halfway between the frequencies of the other two tones.

Simulations of $D S B / S C$ and $A M$ with two equal tones (whose peak is 1) are shown in Figures 8.6 and 8.7. The carrier frequencies are 20 instead of 10 , so α is the same as in previous simulations. The spurious products near the carrier decrease by 16.5 dB and 13.6 dB , respectively, from the single tone case. While this certainly does not prove absolute validity of the single-tone test, it does illustrate some usefulness.
IX. DISTORTION REDUCTION BY USE OF FEEDBACK

Feedback systems offer a means of reducing spurious products due to timing errors. Efficiency may still be high for rise/fall times of 10%, but distortion may be too great to make the amplifier useful unless feedback is used.

The basic principle of a feedback system is that it examines both output and input, and adjusts the output to equal the input. Determination of the behavior of a feedback system containing a non-linearity is difficult, but by making some approximations, approximate characteristics can be determined.

Figure 9.1(a) shows the basic form of an actual system. The pulse train output from the class D amplifier can be decomposed into harmonics of f_{c}. By assuming negligible splatter from modulation of these harmonics, they can be neglected, and the characteristics of the output filter $F_{0}(\omega)$ and detector filter $\mathrm{F}_{\mathrm{D}}(\omega)$ Iumped into one audio filter $\mathrm{F}(\omega)$ (Figure 9.1(b)). The system can then be reduced to an audio system, where the distortion effects are performed by a function $p(y ; \sigma)$ (Figure 9.1(c)).

By specifying the Fourier coefficients of $x(\theta)$, it should be possible to set up and solve equations for the Fourier coefficients of $u(\theta)$ which give a steady state solution. However, the function $p(y ; \sigma)$ has the form (for bipolar AM)

$$
\begin{equation*}
p(y ; \sigma)=y+\frac{\sigma}{4}[\cos \arcsin x] \tag{9.1}
\end{equation*}
$$

since

(a) Actual System

(b) Decomposition by Harmonics of the Carrier

(c) Reduction to Audio System

Figure 9.1. Feedback System.

$$
\begin{gather*}
\frac{4}{\pi} x(\theta) \sin \omega_{C} t+\frac{\sigma}{\pi} \cos \arcsin x \sin \omega_{C} t \\
=\frac{4}{\pi}\left[x(\theta)+\frac{\sigma}{4} \cos \arcsin x(\theta)\right] \tag{.9.2}
\end{gather*}
$$

and generates an infinite number of frequencies for any input other than DC. It is not hard to see that this complicates the problem tremendously.

A means of avoiding this is to approximate $p(y ; \sigma)$ by a finite number of terms. For example, if

$$
\begin{equation*}
p(y ; \sigma) \approx y+\frac{\sigma}{4}\left[1-\frac{1}{2} y^{2}\right] \tag{9.3}
\end{equation*}
$$

the frequencies generated wil be no greater than twice the highest frequency in $x(\theta)$.

Even with this simplification, the feedback loop can . cause an infinite number of frequencies to be generated. As the second harmonic generated by $p(y ; \sigma)$ is fed back, it generates a fourth harmonic, etc. This can be eliminated by assuming thai $F(\omega)$ cuts off completely at a certain frequency, eliminating completely all higher frequency products.

The resultant equations are still complicated but can be solved by the use of numerical iteration. The technique will be illustrated for an AM signal.

$$
\begin{equation*}
x(\theta)=a_{x 0}+b_{x 1} \sin \theta \tag{9.4}
\end{equation*}
$$

with the approximation (9.3) for $p(y ; \sigma)$ and an $F(\omega)$ which passes frequencies up to $2 \frac{1}{2} \omega_{\mathrm{x}}$ with no attenuation, while rejecting completely all higher frequencies.

The resultant form of $\bar{u}(\theta)$ is

$$
\begin{align*}
\bar{u}(\theta)=a_{u 0} & +a_{u 1} \cos \theta+b_{u 1} \sin \theta \\
& +a_{u 2} \cos 2 \theta+b_{u 2} \sin 2 \theta \tag{9.5}
\end{align*}
$$

Then the integrated error signal has the form

$$
\begin{align*}
Y(\theta)=a_{Y 0} & +a_{y 1} \cos \theta+b_{y 1} \sin \theta \\
& +a_{Y_{2}} \cos 2 \theta+b_{Y_{2}} \cos 2 \theta-G a_{u 0} \theta(9.6) \\
& =G \int u(\theta) d \theta . \tag{9.7}
\end{align*}
$$

Unless $Y(\theta)$ is to become larger without limit, $\mathrm{Ga}_{\mathrm{u} 0}{ }^{\theta}$ must be zero, so

$$
\begin{equation*}
a_{u 0}=0 \tag{9.8}
\end{equation*}
$$

This causes

$$
\begin{align*}
& a_{y_{1}}=-G b_{u 1} \tag{9.9}\\
& b_{y_{1}}=+G a_{u 1} \tag{9.10}\\
& a_{y_{2}}=-\frac{G}{2} b_{u 2} \tag{9.11}\\
& b_{y 2}=+\frac{G}{2} a_{u 2} \tag{9.12}
\end{align*}
$$

The DC term, $a_{Y}{ }^{0}$, is a constant which is determined by the rest of the equations.

The term y^{2} in (9.3) can be expanded:

$$
\begin{aligned}
& y^{2}(\theta)=\left[a_{y 0}{ }^{2}+\frac{1}{2} a_{Y 1}{ }^{2}+\frac{1}{2} b_{y 1}{ }^{2}+\frac{1}{2} a_{y^{\prime} 2^{2}}+\frac{1}{2} b_{y 2}{ }^{2}\right] \\
& +\left[2 a_{Y 0} a_{Y 1}+a_{Y 1} a_{Y 2}+b_{Y 1} b_{Y 2}\right] \cos \theta \\
& +\left[2 a_{y 0} b_{Y 1}+a_{Y 1} b_{Y 2}-b_{y 1} a_{Y 2}\right] \sin \theta \\
& +\left[2 a_{y 0} a_{y 2}+\frac{1}{2} a_{y 1}{ }^{2}-\frac{1}{2} b_{y 1}^{2}\right] \cos 2 \theta
\end{aligned}
$$

$$
\begin{align*}
& +\left[2 a_{y 0} b_{y 2}+a_{Y 1} b_{Y 1}\right] \sin 2 \theta \\
& +\left[a_{Y 1} a_{y 2}-b_{Y 1} b_{Y 2}\right] \cos 3 \theta \\
& +\left[a_{Y 1} b_{Y 2}+b_{Y 1} a_{Y 2}\right] \sin 3 \theta \\
& +\left[\frac{1}{2} a_{Y 2}{ }^{2}-\frac{1}{2} b_{Y 2}{ }^{2}\right] \cos 4 \theta \\
& +\left[a_{y 2} b_{Y 2}\right] \sin 4 \theta \tag{9.13}
\end{align*}
$$

The resulting distorted output then has the form

$$
\begin{equation*}
p(y ; \sigma)=a_{p 0}+a_{p 1} \cos \theta+\ldots+b_{p 4} \sin 4 \theta \tag{9.14}
\end{equation*}
$$

where

$$
\begin{align*}
& a_{p 0}=a_{y 0}+\frac{\sigma}{4}-\frac{\sigma}{8} a_{y 0}{ }^{2}-\frac{\sigma}{16} G^{2} b_{u l}{ }^{2}-\frac{\sigma}{16} G^{2} a_{u l}{ }^{2} \\
& -\frac{\sigma}{4 \cdot 16} G^{2} b_{u 2}{ }^{2}-\frac{\sigma}{4 \cdot 16} G^{2} a{ }_{u 2}{ }^{2} \tag{9.15}\\
& a_{p 1}=-G b_{u 1}+\frac{\sigma}{4} G a_{Y 0} b_{u 1}-\frac{\sigma}{16} G^{2} b_{u 1} b_{u 2}-\frac{\sigma}{16} G^{2} a_{u 1} a_{u 2} \tag{9.16}\\
& b_{p 1}=G a_{u I}-\frac{\sigma}{16} G a_{y 0} a_{u 1}+\frac{\sigma}{16} G^{2} b_{u 1} a_{u 2}-\frac{\sigma}{16} G^{2} a_{u 1} b_{u 2} \tag{9.17}\\
& a_{p 2}=-\frac{G}{2} b_{u 2}+\frac{\sigma}{8} G a_{Y 0} b_{u 2}-\frac{\sigma}{16} G^{2} b_{u 1}{ }^{2}+\frac{\sigma}{16} G^{2} a_{u 1}{ }^{2} \tag{9.18}\\
& b_{p 2}=\frac{G}{2} a_{u 2}-\overline{8}^{G a}{ }_{y 0} a_{u 2}+\frac{\sigma_{8}}{8}{ }^{2} b_{u 1} a_{u 1} \tag{9.19}\\
& a_{p 3}=-\frac{\sigma}{16} G^{2} b_{u 1} b_{u 2}+\frac{\sigma}{16} G^{2} a_{u 1} a_{u 2} \tag{9.20}\\
& b_{p 3}=\frac{\sigma}{1.6} G^{2} b_{u 1} a_{u 2}+\frac{\sigma}{16} G^{2} a_{u 1} b_{u 2} \tag{9.21}\\
& a_{p 4}=-\frac{\sigma}{64} G^{2} b_{u 2}{ }^{2}+\frac{\sigma}{64} G^{2} a_{u 2}{ }^{2} \tag{9.22}\\
& b_{p 4}=\frac{\sigma}{32} b_{u 2} a_{u 2} \text {. } \tag{9.23}
\end{align*}
$$

The balance of these against the Fourier coefficients of
$x+u$ requires

$$
\begin{align*}
& a_{p 0}=a_{x 0}+0 \tag{9.24}\\
& a_{p 1}=0+a_{u 1} \tag{9.25}\\
& b_{p 1}=b_{x 1}+b_{u 1} \tag{9.26}\\
& a_{p 2}=0+a_{u 2} \tag{9.27}
\end{align*}
$$

and

$$
\begin{equation*}
b_{p 2}=0+b_{u 2} \tag{9.28}
\end{equation*}
$$

Five non-linear equations in five unknowns result. For notational simplicity, let

$$
\begin{align*}
& c_{1}=a_{y 0} \tag{9.29}\\
& c_{2}=a_{u 1} \tag{9.30}\\
& c_{3}=b_{u 1} \tag{9.31}\\
& c_{4}=a_{u 2} \tag{9.32}\\
& c_{5}=b_{u 2} \tag{9.33}
\end{align*}
$$

The five non-linear equations are then

$$
\begin{align*}
& c_{1}+\frac{\sigma}{4}-\frac{\sigma}{8} c_{1}^{2}-\frac{\sigma}{15} G^{2} c_{3}^{2}-\frac{\sigma}{16} c_{2}^{2}-\frac{\sigma}{64} c_{5}^{2}-\frac{\sigma}{64 \pi} c_{4}^{2}=a_{x 0} \text { (9.34) } \\
& -G c_{3}+\frac{\sigma}{4} G c_{1} c_{3}-\frac{\sigma}{16} G^{2} c_{3} c_{5}-\frac{\sigma}{16} G^{2} c_{2} c_{4}=c_{2} \tag{9.35}\\
& G c_{2}-\frac{\dot{G}}{4} G c_{1} c_{2}+\frac{\sigma}{16} G^{2} c_{3} c_{4}-\frac{\sigma}{16} G^{2} c_{2} c_{5}=b_{x 1}+c_{3} \tag{9.36}\\
& -\frac{G}{2} c_{4}+\frac{\sigma}{8} G c_{1} c_{4}-\frac{\sigma}{16} G^{2} c_{3} 2+\frac{\sigma}{16} G^{2} c_{2}^{2}=c_{4} \tag{9.37}\\
& \frac{G}{2} c_{5}-\frac{\sigma}{8} G c_{1} c_{4}+\frac{\sigma}{8} G^{2} c_{3} c_{2}=c_{5} \tag{9.38}
\end{align*}
$$

Any sort of direct solution appears difficult. However, when $\sigma=0$, the non-linearities are removed, and a solution
can be obtained. The equations can then be linearized, and solutions found for $\sigma \neq 0$ by iteration. The linearization process uses

$$
\begin{gather*}
c_{1} c_{2} \rightarrow\left(c_{1}+d c_{1}\right)\left(c_{2}+d c_{2}\right) \tag{9.39}\\
\approx c_{1} c_{2}+c_{1} d c_{2}+c_{2} d c_{1}
\end{gather*}
$$

(9.40)
($d c_{1} d c_{2}$ is dropped). The resultant Iinearized equations are

$$
\begin{align*}
& \left(1-\frac{\sigma}{4} c_{1}\right) d c_{1}+\left(-\frac{\sigma}{8} G^{2} c_{2}\right) d c_{2}+\left(-\frac{\sigma}{8} G^{2} c_{3}\right) d c_{3}+\left(-\frac{\sigma}{8} G^{2} c_{4}\right) d c_{4} \\
& \quad+\left(-\frac{\sigma}{8} G^{2} c_{5}\right) d c_{5}=a_{x 0}-\frac{\sigma}{4}-c_{1}+\frac{\sigma}{8} c_{1}{ }^{2} \\
& \quad+\frac{\sigma}{16} G^{2}\left(c_{2}^{2}+c_{3}^{2}+c_{4}^{2}+c_{5}^{2}\right) \tag{9.41}\\
& \left(\frac{\sigma}{4} G c_{3}\right) d c_{3}+\left(-\frac{\sigma}{16} G^{2} c_{4}-1\right) d c_{2}+\left(\frac{\sigma}{4} G c_{1}-\frac{\sigma}{16} G^{2} c_{5}-G\right) d c_{3} \\
& \quad+\left(-\frac{\sigma}{16} G^{2} c_{2}\right) d c_{4}+\left(-\frac{\sigma}{16} G^{2} c_{3}\right) d c_{5}=c_{2}+G c_{3}-\frac{\sigma}{4} G c_{1} c_{3} \\
& \quad+\frac{\sigma}{16} G^{2} c_{3} c_{5}+\frac{\sigma}{16} G^{2} c_{2} c_{4} \tag{9.42}\\
& \left(-\frac{\sigma}{4} G c_{2}\right) d c_{1}+\left(-\frac{\sigma}{4} G c_{1}-\frac{\sigma}{16} G^{2} c_{5}+G\right) d c_{2}+\left(\frac{\sigma}{16} G^{2} c_{4}-1\right) d c_{3} \\
& \quad+\left(\frac{\sigma}{16} G^{2} c_{3}\right) d c_{4}+\left(-\frac{\sigma}{16} G^{2} c_{2}\right) d c_{5}=b_{x 1}+c_{3}-G c_{2} \\
& \quad+\frac{\sigma}{4} G c_{1} c_{2}-\frac{\sigma}{16} G^{2} c_{3} c_{4}+\frac{\sigma}{16} G^{2} c_{2} c_{5} \tag{9.43}\\
& \left(\frac{\sigma}{8} G c_{4}\right) d c_{1}+\left(\frac{\sigma}{8} G^{2} c_{2}\right) d c_{2}+\left(-\frac{\sigma}{8} G^{2} c_{3}\right) d c_{3}+\left(\frac{\sigma}{8} G c_{1}-\frac{G}{2}-1\right) d c_{4} \\
& \quad+(0) d c_{5}=c_{4}+\frac{G}{2} c_{4}-\frac{\sigma}{8} G c_{1} c_{4}+\frac{\sigma}{16} G^{2} c_{3}^{2}-\frac{\sigma}{16} G^{2} c_{2}^{3}
\end{align*}
$$

These can be arranged in matrix form

$$
\begin{equation*}
\bar{\Xi}\left(c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right) \cdot \overline{\mathrm{dC}}=\overline{\mathrm{D}}\left(c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right) . \tag{9.46}
\end{equation*}
$$

Given starting values, (9.46) is solved, and then the c_{i} are " revised according to

$$
\begin{equation*}
c_{i} \leftarrow c_{i}+d c_{i} \tag{9.47}
\end{equation*}
$$

and the process is repeated until the $d c_{i}$ are insignificant. A convenient starting point is provided by $G=0$ and $\sigma=0$. The values with $\sigma=0$ can then be computed, and from these, the values with $\sigma>0$ can be computed.

With no feedback,

$$
\begin{aligned}
x^{2}(\theta) & =\left(a_{x 01}+b_{x 1} \sin \theta\right)^{2} \\
& =a_{x 0}{ }^{2}+2 a_{x 0^{b}}{ }_{x 1} \sin \theta+b_{x 1}{ }^{2} \sin ^{2} \theta \\
& =\left(a_{x 0^{3}}+\frac{1}{2} b_{x 1}\right)+\left(2 a_{x 0^{b}}{ }_{x 1}\right) \sin \theta+\left(-\frac{1}{2} b_{x 1}{ }^{2}\right) \cos \operatorname{cin}_{(9.49)}^{2 \theta}
\end{aligned}
$$

The Fourier coefficients of the distortion are then

$$
\begin{align*}
& \left|a_{u 1}\right|=\frac{\sigma}{4} \quad a_{x 0}{ }^{2}+\frac{1}{2} b_{x 1} \tag{9.5I}\\
& \left|b_{u 1}\right|=\frac{\sigma}{2} \quad a_{x 0^{2}} b_{x 1} \tag{9.52}\\
& \left|a_{u 2}\right|=\frac{\sigma}{8} b_{x 1} \tag{9.53}
\end{align*}
$$

For the signal used,

$$
\begin{align*}
& \left|a_{u 0}\right|=\frac{\sigma}{4} \frac{1}{4}+\frac{1}{8}=(.09375) \sigma \tag{9.54}\\
& \left|b_{u 1}\right|=\frac{\sigma}{2}\left(\frac{1}{2} \cdot \frac{1}{2}\right)=(.125) \sigma \tag{9.55}\\
& \left|a_{u 2}\right|=\frac{\sigma}{8}\left(\frac{1}{2}\right)^{2}=(.03125) \sigma \tag{9.56}
\end{align*}
$$

Figure 9.2. Feedback System with $\sigma / 2 \pi=0$.

Figure 9.3. Feedback System with $\sigma / 2 \pi=0.001$.

Figure 9.4. Feedback System with $\sigma / 2 \pi=0.01$.

Figure 9.5. Feedback System with $\sigma / 2 \pi=0.1$.

Solutions for values of G from 0.1 to 100 and timing errors of $0,0.1 \%, 1 \%$, and 10% were found by computer, and are shown in Figures 9.2 through 9.5. Figure 9.2 shows the ability of such a feedsystem to "track" the input signal when there is no distortion. In the other figures, variations of the spurious products with gain are shown. There appears to be a sort of resonance at $G=2$, as the filter begins to track, but for higher gains, the magnitudes of the spurious products decrease. A decrease of 20 to 40 dB , depending on σ, is possible with a gain of 100.

This is a long way from a good solution to the feedback system effectiveness. However, the incorporation of additional terms generates an enormous amount of additional work. Possibly computer aided sorting could be used to eliminate the manual differentiation and sorting involved with deriving (9.40) through (9.44).

Some consideration should also be given to application of a feedback system to DSB and SSB generation. The same technique should apply to DSB/SC signals, but the function $p(y ; \sigma)$ will have to be modified. It would probably be best to incorporate pulse deterioration into the model, rather then to use cos arcsin $x \operatorname{sgn}(x)$, due to discontinuities of the derivatives at $\mathrm{x}=0$. For $S S B$, both envelope and phase feedback might be employed, as in Figure 9.6, and the analysis is likely to be fairly complicated.

Figure 9.6. Envelope and Phase Feedback System.

X. COMMENTS AND CONCLUSIONS

The use of pulse-width modulation or class D amplification to generate a modulated radio-frequency signal has been investigated with regard to efficiency and spurious products.

Two significant advantages of PWM switching at the carrier frequency were found: First, its efficiency is higher than that of other types of amplification. Secondly, for dou-ble-sideband signals, spurious products for the ideal amplifier are bandimited around the harmonics of the carrier, and can easily be removed.

Distortions particular to this type of amplifier were analyzed. There are three important types: Voltage error, saturation voltage, and timing error. Voltage-error distortion occurs when positive and negative voltages are unequal, and generates infinite bandwidth spurious products around the even harmonics of the carrier. Non-zero saturation voltage does not generate harmful spurious products for AM, but for DSB/SC or SSB, it generates IMD around the carrier and its odd harmonics. Timing error arises from elongated or shortened pulses, or from unequal transition times. It generates infinite bandwidth products around odd harmonics of the carrier. Generally, the only significant effect is IMD around the carrier. The largest IMD produci generated is reduced below the desired signal by approximately the ratio of the net timing error to the period of the carrier.

Further work needs to be done on the spurious products of a general SSB signal. The inherent modulation of odd harmonics of the carrier is not bandlimited. Although simulations show it to decay rapidly, no theoretical assessment was made. Knowledge of the characteristics of this modulation would be very useful in determining whether the interlacing/ overlapping methods or Kahn's method would be best for SSB generation.

Knowledge of the spectrum of the spurious products (8.1) for a general modulating signal would be useful, particularly if it can be used to determine absolute upper limits for the spurious products. It may suggest the definition of a new set of special functions to do this.

The applicability of feedback systems, both amplitude and envelope-phase types, should be examined more fully, since reduction of the distortion by feedback will allow the class D amplifier to operate as much as a decade higher in frequency.

Comparisons with other types of high-efficiency amplifiers should be made, including ciasses $A D$ and $B D$ (see appendix), quantization, and multi-level hybrid methods. The Avco report (18) should be interesting in this respect.

Also interesting would be the combination of a digital single-sideband generator (25) with the class D RF amplifier to make a completely digital transmitter. Spurious products may make this combination unworkable, however.

- Because of its high efficiency and desirable spectral
characteristics, the class D RF amplifier may be the best means of extending solid state circuitry to high-power, highfrequency transmitters.
XI. REFERENCES

1. New Mullard technique amplifies R. F. linearly with efficiency of 90%. Mullard Press Jnformation, London, England. January 1971.
2. Rose, B. E. Notes on class D transistor amplifiers. IEEE Transactions on Solid State circuits SC-4, No. 3: 178-179. June 1969.
3. Page, D. F., W. D. Hindson, and W. J. Chudobiak. on solid state class D systems. IEEE Proceedings 53: 423-424. 1965.
4. Osborne, M. R. Design of tuned transistor power amplifiers. Electronic Engineering (Australia) 40: 436-443. August 1968.
5. Lohrmann, Dieter R. and James P. Hubert. If back intermodulation is a problem... Electronic Design 19, No. 23: 48-49. 11 November 1971.
6. Besslich, Phillip. Device for amplitude-modulating a high frequency carrier wave. U. S. Patent 3,363,199. 9 January 1968.
7. RCA Power Circuits: DC to Microwave. RCA Electronic Components, Harrison, New Jersey. 1969.
8. RF Power Transistor 2N6093 (Data Sheet). File Number 484. RCA Solid State Division, Somerville, New Jersey. March 1971.
9. Alley, Charles L., and Kenneth W. Attwood. Electronic Engineering. John Wiley and Sons, New York. 1966.
10. Scott, Thomas M. Tuned power amplifiers. IEEE Transactions of Circuit Theory CT-11: 206-211. June 1965.
11. Gates 100,000 Watt Medium Wave AM Broadcast Transmitter (Advertising brochure for VP-100). Gates Radio Company, Quincy, Illinois. 1970.
12. Stokes, V. O. Radio Transmitters: R. F. Power Amplification. Van Nostrand Reinholt Company, London. 1970.
13. Ramachandran, Gopal. A Survey of Pulse Width Modulation. Unpublished M. S. thesis. Library, Iowa State University, Ames, Iowa. 1970.
14. Martin; J. D. Theoretical efficiencies of class-D power amplifiers. IEE Proceedings (London) 117: 1089-1090. 1970.
15. Maxtin, J. D. Class-BD amplifier circuit. Electronic Letters 6; No. 26: 839-841. December 1970.
16. Black, H. S. Modulation Theory. D. Van Nostrand Company, New York. 1953.
17. Swanson, Hilmer. Private conversation. 1 September 1971.
18. Proposal for High Efficiency Linear SSB Power Amplifier. RFQ DAABO7-71-Q-0179, File Number 17,4183N-1270-USAECOM, Ft. Manmouth, New Jersy. Avco Corporation Electronics Division, Cincinnati, Ohio. 27 January 1971.
19. Kahn, L. R. Single sideband transmission by envelope elimination and restoration. IRE Proceedings. 40, No. 7: 803-806. JuIy 1952.
20. Kahn, L. R. Comparison of linear single-sideband transmitters with envelope elimination and restoration singlesideband transmitters. IRE Proceedings. Vol. 44, No. 6: 1706-1712. December 1956.
21. George, D. A. Continuous Non-Linear Systems. Technical Report Number 355. MTT Research Laboratory of Electronics: Cambridqe, Massachusetts. 24 üuly 1959.
22. Jolley; L. B. W. Summation of Series. Dover Publications, New York. 1961.
23. Bracewell, Ron. The Fourier Transform and its Applications. McGraw-Hill, New York. 1965.
24. Slepian, David. An expansion for FM spectra. IEEE Transactions on Communication Technology COM-19, No. 2: 223. Apri1 1971.
25. Darlington, s. On digital single sideband modulators. TEEE Transactions on Circuit Theory. CT-17, No. 3: 409-414. August 1970.
26. Wylie, C. R., Jr. Advanced Engineering Mathematics. McGraw-Hill, New York. 1960.

A. Additional References

Baxandall, P. J. Transistor sine-wave LC oscillators. IEE Proceedings (London). Pt. B, Supplement 16 (Interna+ional convention on Transistors and Associated Semiconductor Devices). May 1959.

Bell, W. W. Special Functions for Scientists and Engineers. D. Van Nostrand Company, Ltd., London. 1968.

Johnson, K. C. 1: Class D principles analysed. Wireless World 73, No. 12: 576-580. December 1967.

Johnson. K. C. 2: The design of a circuit. Wireless World 73, No. 13: 645-649: January 1968.

Johnson, K. C. 3: Distortion inherent in PWM. Wireless World 73, No. 14: 672-676. February 1968.

Kreizmer, E. R. Distortion in pulse-duration modulation. IRE Proceedings 35: 1230-1235. 1947.

Schaefer, R. A. New pulse modulation method varies both frequency and width. Electronics 35: -50-53. 12:October 1962.

XII. ACKNOWLEDGEMENT

The author wishes to thank his major professors Dr. Grover Brown and Dr. Paul Bond for their advice and assistance during his graduate program. The author is especially grateful for the consultation with Paul Bond during the research for and preparation of the dissertation.

The author wishes to thank the Electrical Engineering Department for providing computer time which was used to obtain many of the results contained herein. The interesting and informative discussions with Hilmer Swanson of Gates Radio Company and Eugene Janning of Avco Electronics were also appreciated. Thanks are in order for Clayton Clifford, who provided valuable assistance in preparing a printed circuit board for the prototype and in taking data. Finally, the author wishes to thank his wife for many long hours spent typing this dissertation, and Avco Electronics Division for the use of their photo-reproduction facilities.

XIIT. AFPENDIX I: OTHER AMPLIFIERS

The attention given spurious products generated by a class \mathcal{D} RF amplifier might give the impression that it has more severe problems with spurious products than classes $B, A D$, or BD . It appears, however, that the spurious product problem is no more severe, or even slightly less severe, than those of the other amplifiers. A detailed analysis of the spurious products generated by these amplifiers is beyond the scope of this dissertations but several quick observations are possible.

A. Class B

The operation of a single-ended (non push-pull) amplifier may be approximated by a piece-wise linear model shown in Figure 13.1, for unity gain. With no signal input, the ampiifier output $:$ (before the tuned circuit) is the quiescent voltage q. The amplifier operates linearly, saturating at $\mathrm{w}=1$ and cutting off at $\mathrm{w}=0$.

The waveforms generated by such an amplifier are shown in Figure 13.2. For purposes of analysis, it is convenient to decompose the output waveform $w(t)$ into a rectified wave $r(t)$, quiescent voltage q, and clipped wave $u(t)$:

$$
\begin{equation*}
w(t)=r(t)+q+u(t) \tag{13.1}
\end{equation*}
$$

Ideally, $q=0$, so $u(t)=0$, and the only waveform to contend with is $r(t)$. The spectrum of $r(t)$ can be determined by multiplying the input wave $r(t)$ by a switching function:

Figure 13.1. Transfer Characteristic for Class B Amplifier.

$$
\begin{align*}
r(t)= & v(t)\left[\frac{\operatorname{son} v(t)+1}{2}\right] \tag{13.2}\\
= & E(t) \sin \left[\omega_{C} t+\infty(t)\right]\left\{\frac{\operatorname{sgn}\left[\omega_{C} t+\omega(t)\right]+1}{2}\right\}(13.3) \tag{13.3}\\
= & E(t) \sin \psi\left[\frac{s(1 \psi)+1}{2}\right] \tag{13.4}\\
= & E(t)(\sin \psi) \cdot \frac{2}{\pi}\left(\frac{\pi}{4}+\sin \psi+\frac{1}{3} \sin 3 \psi+\ldots\right)(13.5) \\
= & E(t) \frac{2}{\pi}\left[\frac{\pi}{4} \sin \psi+\frac{1}{2}(\cos 0-\cos 2 \psi)\right. \\
& \left.\quad+\frac{1}{3}-\frac{1}{2}(\cos 2 \psi-\cos 4 \psi)+\ldots\right] \quad(13.6) \tag{13.6}
\end{align*}
$$

$=E(t)\left[\frac{1}{\pi x} \frac{1}{2} \sin \psi+\frac{-3+1}{2 \cdot 1 \cdot 3} \sin 2 \psi\right.$

$$
\begin{equation*}
\left.+\frac{-5+3}{2 \cdot 3 \cdot 5} \sin 4 \psi+\ldots\right] \tag{13.7}
\end{equation*}
$$

$=\frac{1}{2} E(t) \sin \left[\omega_{c} t+\varphi(t)\right]$

$$
\left.+\frac{2}{\pi} E(t) \quad \frac{1}{2}-\sum_{k=0}^{\infty} \frac{1}{\left(4 k^{2}-1\right)} \cdot \cos \left[2 k \omega_{c} t+2 k \varphi(t)\right]\right\} .
$$

Figure 13.2. Waveforms in a Class B Amplifier.

When unmoduiated ($E=$ constant, $\varphi=0$), $r(t)$ consists of the carrier frequency, $D C$, and even harmonics. When $r(t)$ is an ampiitude-moduiated signai,

$$
\begin{equation*}
E(E)=x(t) \tag{13.9}
\end{equation*}
$$

and

$$
\begin{equation*}
m(t)=0, \tag{13.10}
\end{equation*}
$$

so $r(t)$ becomes simply a series of amplitude-modulated harmonics. A simulation of this is shown in Figure 13.3.

However, for DSB/SC signals (or SSB 2-tone),

$$
\begin{equation*}
r p(t)=0 \text { or } \pi \tag{13.11}
\end{equation*}
$$

For the even harmonics, a phase shift of $2 k \pi$ produces no polarity reversal. Hence the harmonic and DC component are mod-

Figure 13.3. Spectrum of a Class B Amplifier.
ulated by $E(t)$, which is not bandlimited. A simulation is shown in Figure 13.4. For SSB, the situation is more complicated, but non-bandimited modulation of the DC component and harmonics occurs as with DSB/SC.

Actual class B amplifiers have a small but non-zero quiescent voltage or current. Any exact analysis of the spectrum of $u(t)$ is very difficult, and doubtfully warranted, since operation is not exactly linear in this region. However, for small values of q, cutoff occurs almost instantaneously, producing a square wave

$$
\begin{align*}
u(t) & =-q \frac{1-\operatorname{sqn} v(t)}{2} \tag{13.12}\\
& =-q \frac{1-s\left[\omega_{c} t+\varphi(t)\right]}{2} \tag{13.13}
\end{align*}
$$

This is analagous to the effects of non-zero saturation volt-: age in a class D RF amplifier (Chapter V), and produces phasemodulated odd harmonics of the carrier. (In the case of AM, there is no phase modulation, so the only effects are variation of the carrier level and introduction of odd harmonics of the carrier. A simulation with $q=0.01$ (Figure 13.5) shows this to be valid. For $q=0.1$ (Figure 13.6), the square wave assumption is no longer valid, although IMD around the carrier and odd harmonics are still apparent.

It is interesting to note that the class B amplifier has spurious products analogous to both voltage error (monopolar) and saturation voltage products in the class $D R F$ amplifier.

Figure 13.4. Spectrum of a Class B Amplifier.

Figure 13.6. Spectirum of a Class B Amplifier.

However, class B is the most commonly used linear RF amplifier. Large values or q are not uncommon; in the popular 6146 tetrode, a quiescent current of 25 mA is recommended, with a peak current of 150 mA , which is a normalized $\mathrm{q}=0.167$.
B. Conventional Pulse Width Modulation

The spectra (before filtering) of a class AD or $B D$ amplifier (see Chapter II) is determined in essentially the same way as for the class D RF amplifier. The pulse width varies such that

$$
\begin{equation*}
|y|=\pi|[q+v(\theta)]| \tag{13.14}
\end{equation*}
$$

where q determines the quiescent width. The pulse train generated can be characterized as a monopolar pulse train of frequency f_{s}, with constant phase, whose width varies as the magnitude of y, and whose polarity depends on the polarity of y :

$$
\begin{equation*}
w(t)=f_{+}\left(w_{s} t,|y|, \infty_{s}\right) \operatorname{sgn}(y) \tag{13.15}
\end{equation*}
$$

Note that in the class AD amplifier, q and x are restricted so that y is never negative.

The value of φ_{S} is relatively unimportant, since it merely phase shifts the whole pulse train and otherwise has no effect on the spectrum generated. Expanding (13.15),

$$
w(\theta)=\left[\frac{|y|}{\pi}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin n|y|}{n} \cos \left(n w_{s} t-n \omega_{s}\right)\right] \operatorname{sgn} y
$$

$$
=\frac{1}{\pi}|y| \operatorname{sgn} y+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{z_{n}}{n} \cos \left(n w_{s} t-n \varphi\right)
$$

In any case,

$$
\begin{equation*}
|y| \operatorname{sgn} y=y=\pi[q+v(\theta)] \tag{13.18}
\end{equation*}
$$

which includes the desired output $v(\theta)$ and possibly a DC com-. ponent, which may be removed by the output filter.

Spurious products arise from inherent modulation of the switching frequency and its harmonics:

$$
\begin{aligned}
& z_{k}=\sin k l_{Y} \mid \operatorname{sgn} y=\sin k y \\
&=\sin k \pi q \cos k \pi v(t)+\cos 3 k \pi q \sin k \pi v(t) ; \\
&(13.20)
\end{aligned}
$$

z_{k} is not generally bandimited. The spectrum of z_{k} can be described in terms of Bessel functions (26). Let

$$
\begin{equation*}
v(t)=b \sin \theta_{c} \tag{13.21}
\end{equation*}
$$

Then ∞

$$
\cos \left(k \pi b \sin \theta_{C}\right)=J_{0}(k \pi b)+2 \Sigma J_{2 n}(k \pi b) \cos 2 n \theta_{C}(13.22)
$$

and
∞

$$
\begin{equation*}
\sin \left(k \pi b \sin \theta_{c}\right)=2 \sum J_{2 n-1}(k \pi b) \sin (2 n-1) \theta_{C} \tag{13.23}
\end{equation*}
$$

Thus
∞

$$
z_{k}(t)=\sin k \pi q\left[J_{0}(k \pi b)+2 \Sigma J_{2 n}(k \pi b) \cos 2 n \theta_{c}\right]
$$

Figure t3.7. Spectrum of Conventional PWM.
$\pm \cos k \pi q \underset{n=1}{\infty}\left[2 \Sigma J_{2 n-1}^{\infty}(k \pi b) \sin (2 n-1) \theta_{C}\right]$ (13.24)

Figure 13.7 illustrates the type of spectrum generated.
For a class $2 D$ amplifier, to get maximum output,

$$
\begin{equation*}
b=q=\frac{1}{2} \tag{13.25}
\end{equation*}
$$

This particular value of q eliminates some of the distortion
products while maximizing others:

$$
\begin{align*}
& \sin k \pi q= \begin{cases}(-1)^{k+1}, & k \text { odd } \\
0 & , k \text { even }\end{cases} \tag{13.26}\\
& \cos k \pi q= \begin{cases}0 & k \text { odd } \\
(-1)^{k+1}, & k \text { odd }\end{cases} \tag{13.27}
\end{align*}
$$

Similarly, for class $B D$,

$$
\text { and } \begin{array}{ll}
q=0 \\
b=1 \tag{13.29}
\end{array}
$$

In this case,
and

$$
\begin{align*}
& \sin k \pi q=0 \tag{13.30}\\
& \cos k \pi q=1 \tag{13.31}
\end{align*}
$$

A simulation of the class $A D$ amplifier is shown in Figure 13.8. When modulation is introduced,

$$
\begin{equation*}
v(t)=x(t) \sin \omega_{c} t \tag{13.32}
\end{equation*}
$$

and b is replaced with $x(t)$ in (13.24). This secondary modulation is characterized by $J_{m}[x(t)]$. It should be possible, with some difficulty, to develop a Fourier series for J_{m} (sin θ) ; however, it is beyond the scope of this dissertation. Simulations (Figures 13.9, 13.10, and 13.11) show that this secondary modulation dies away fairly rapidly (note that in actual amplifiers, an α larger than used in the simulation is probable, so decay would be faster than in the simulation. Careful choice of $B=\mathrm{f}_{\mathrm{S}} / \mathrm{f}_{\mathrm{C}}$ can prevent stronger spurious products from falling on or near the desired output frequency. Nate that in Figure 13.12 spurious products near f_{c} are actu-

Figure 13.8. Spectrum of a Class AD Amplifier.

Figure 13.9. Spectrum of a Class AD Amplifier.

Figure 13.10. Spectrum of a Class AD Amplifier.

Figure 13.11. Spectrum of a Class BD Amplifier.

Figure.13.12. Spectrum of a class AD Amplifier.
ally reduced, even though f_{S} is lower. It is not possible, however, to prevent all spurious products from being near f_{c}. If this were attempted (for either class $A D$ or $B D$), it would be necessary to prevent modulation of even harmonics of f_{s} from falling at f_{c} :

$$
\begin{gather*}
2 k \beta f_{c}-(2 i-1) f_{c} \neq f_{C} \tag{13.33}\\
2 k \beta \neq 2 i \tag{13.34}\\
\beta \neq \frac{i}{k} \tag{13.35}
\end{gather*}
$$

Whereas it is certainly possible to choose β not equal to any particular ratio of integers, it is not possible to avoid all such ratios. It should be possible, however to choose β to reduce the spurious products near f_{C}.

Further distortions can arise from quiescent voltage error, non-zero saturation voltage, (BD only) and pulse-timing errors. Some general ideas about the nature of these may be obtained, but due to the complexity and number of combinations of parameters. these ideas are fairly non-specific.

Suppose that q differs from its exact value by. δq. Then $\sin k \pi(q+\delta q)=\cos \delta q \sin k \pi q+\sin \delta q \cos k \pi q(13.36)$ $\approx \sin k \pi q+k \pi \delta q \cos k \pi q \quad$.

Similarly

$$
\begin{equation*}
\cos k \pi(q+\delta q) \approx \cos k \pi q-k \pi \delta q \operatorname{din} k \pi q \quad . \tag{13.38}
\end{equation*}
$$

If β has been chosen to minimize spurious products near f_{c}, δq can introduce products which were zero with the correct value of q. A simulation with $\delta q=0.1(q=0.4)$ is shown in Figure
13.13; note the introduction of a signal at $f=15$.

Non-zero saturation voltage has approximately the same effect as in the class D RF amplifier; it produces a square wave at F_{C}. When a DSB/SC or SSB signal is generated, phase modulation of the square wave occurs, generating the same kind of IMD as before.

There are two philosophies which might be used. One would spread the spurious products, keeping those near the carrier small. The other would fix β as some ratio of small integers ($5,9 / 4$, ctc.), so that spurious products would occur only on multiples of a specified frequency (e. g. $\frac{1}{2} f_{c}, f_{c}, \frac{3}{2} f_{c}$, etc.). With this method, secondary modulation products of spurious products not at f_{c} should die avay rapidly, leaving only an IMD effect. Finding means of choosing β for either philosophy would make an interesting study.

To analyze the effects of pulse bias (or rise/fall), a distortion waveform $u(t)$ is added, as for class D RF amplifier (Figure 13.14).

Consider first only the pulse associated with τ_{1} in a class AD amplifier:

$$
u_{B 1}(t)=\frac{\tau_{1}}{2 \pi}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin \frac{n \tau_{1}}{2}}{n} \cos \left\{n w_{s} t-n\left[\pi-\left(y+\frac{\tau_{1}}{2}\right)\right]\right\}
$$

As before, for small \mathcal{T}_{1},

$$
\begin{equation*}
\frac{\sin \frac{n \tau_{1}}{2}}{n} \approx \frac{\tau_{1}}{2} \tag{13.40}
\end{equation*}
$$

Figure 13.13. Spectrum of a Class AD Amplifier.

Figure 13.14. Pulse Bias in Class BD Amplifier.

$$
\begin{align*}
& \left.\cos \left\{n()_{S} t-n\left[\pi-\left(y+\frac{\Upsilon_{1}}{2}\right)\right]\right\} \approx \cos \left[n \omega_{S} t-n \pi+n y\right)\right] \tag{13.41}\\
& \left.=\frac{(-1}{2}\right)^{n}\left[\cos n y \cos n \omega_{s} t-\sin n y \sin n \omega_{S} t\right] \tag{13.42}
\end{align*}
$$

The process for $u_{B 2}(t)$ is similar, and the combined result is

$$
\begin{align*}
u_{B+}(t) \cong \frac{\tau_{1}+\tau_{2}}{2 \pi} & +\frac{1}{\pi} \sum_{n=1}^{\infty}(-1)^{n}\left[\left(\tau_{1}+\tau_{2}\right) \cos n|y| \cos n \omega_{S} t\right. \\
& \left.+\left(-\tau_{1}+\tau_{2}\right) \sin n|y| \sin \omega_{S} t\right] \tag{13.43}
\end{align*}
$$

Although there is no IMD generated at f_{c}, both cos ny and sin ny are reducible to a set of Bessel functions, and may cause spurious products to appear where the choice of q should have surpressed them. A simulation of a class AD amplifier with a pulse bias error of 10% is shown in Figure 13.15.

For class $B D$, the situation is more complicated. An expression similar to (13.43) can be developed for the negative

Figure 13.15. Spectrum of a Class AD Amplifier.
pulses. Assuming Y is always negative,

$$
\begin{align*}
-u_{B-}(t) \cong \frac{\tau_{3}+\tau_{4}}{2 \pi} & +\frac{1}{\pi} \Sigma(-1)^{n}\left[\left(\tau_{3}+\tau_{4}\right) \cos n|y| \cos n w_{s} t\right. \\
& \left.+\left(-\tau_{3}+\tau_{4}\right) \sin n|y| \sin n w_{s} t\right]
\end{align*}
$$

The last two equations can be combined to produce

$$
\begin{equation*}
u_{B}(t)=u_{B+}(t)\left(\frac{\operatorname{son} v(t)-1}{2}\right)+u_{B-}(t)\left(\frac{1-\operatorname{sgn} v(t)}{2}\right) \tag{13.45}
\end{equation*}
$$

This results in the addition of further spurious products due to phase shifting. Martin (15) claims that this spreads (flattens) the spectrum and is therefore more useful for an audio amplifier. However, the usefulness of this effect in an RF amplifier is doubtful.

Based on the above theory and the simulations performed, it appears that classes $A D$ and $B D$ would generate little $I M D$, but would have much stronger spurious product scattered throughout the RF spectrum, which would make broadband operation difficult.

C. Other Amplifiers

Spurious products generated by amplitude modulation of a Class C or constant carrier class D amplifier are essentially those produced by the modulator. However, if the shape of the transistor waveforms changes as a function of modulation, other spurious signals can be generated.

If Kahn's method of generating $S S B$ is used, with external
envelope amplification; harmonics of the carrier will have the form $E(t) \sin k\left[\omega_{c} t+\varphi(\theta)\right]$, and will presumably generate the same kind of pioduct as if width and phase modulation of a class D RF amplifier had been used.

XIV. APPENDIX II: PROTOTYPE

A prototype amplitude-modulated transmitter employing class D RF amplification was built to illustrate the principles of operation.

This transmitter used a carrier frequency of 125 kHz . The rather low frequency for an RF carrier was chosen because of the limitations of the author's oscilloscope and power supplies. Had lower-voltage/higher-current power been available, and an oscilloscope with a smaller rise time, it should have been possible to operate at 1 mHz with the transistors used. The limitation to $A M$, rather than $D S B / S C$ or $S S B$ was made to simplify the circuitry.

The circuitry follows the block diagram of an AM transmitter given in Figure 3.4. The prototype requires both +12 and -12 volts input power. Transistor voltage regulators (Q1 - Q4) provide additional voltages of ± 3.3 and ± 10 Volts. A 125 kHz sine wave of approximately $5 \mathrm{~V} \mathrm{p}-\mathrm{p}$ is supplied by the oscillator. The audio amplifier provides a high input impedance and voltage gain for demonstrating the amplifier; it can be bypassed for measurements.

Transistors Q9 and Q10, and the associated circuitry, allow an adjustable delay to provide for unequal delays in the two signal paths in the transmitter. Transformer T2 inverts the signal, which is rectified by diodes D5 - D8, to form the reference wave (which is negative). The reference wave is
added to the audio signal and an adjustable bias (carrier level). This sum is applied to a clipping circuit to form pulses Whenever the sum is greater than zero.

The output of the oscillator is applied to a clipping circuit to produce a square wave with frequency of 125 kHz . The square wave and the comparator output are applied to an AND circuit (020, actually NAND), which provides a pulse when the output showld be positive. A similar circuit generates pulses when the output should be negative.

Each of the four output transistors acts as a voltage amplifier, and is driven by one other transistor. The drive to the grounding transistors Q29 and Q30 can be switched to provide monopolar or bipolar operation. The output pulse waveform is switched between $+10,0$, and -10 Volts. The load impedance is 50Ω. The output tuning coil, L3, consists of 250 turns on a 2.5 cm . form. Maximum output pover is 1.62 Watts.

Some observations of the transmi.tter were made using a Tekironix 564 oscilloscope (10 mHz). A photograph of the pulse train and filtered output are shown in Figure 14.7. The efficiency, determined by comparing the actual output voltage with the ideal output voltage for a 9.5 V power supply, was only approximately 75\%. However, saturation voltage was relatively large (1.5 V during grounding, 0.5 V for + or -), and the rise time $\sigma=0.1 \cdot 2 \pi$.

Figure 14.1. Fower Supply.

AUDIO AMPLIFIER

RF OSCILLATOR (125 kHz)

Figure 14.2. Audio Amplifier and RF Oscillator.

PHASE SHIFTER

REFERENCE WAVE GENERATOR

Figure 14.3. Peference Generator and Detector.

CLIPPER

NOTE: All transistors on this page are 2N2222.

Figure 14.4. Clipper and Comparator.

Figure 14.5. Logic.

NOTE: R82, R83, R84 = 1502, IN.
$\mathrm{C} 24, \mathrm{C} 25=0.005 \mu \mathrm{~F} ; \mathrm{L} 3=0.7 \mathrm{mH}$.

Figure 14.6. Fower Amplifier.

Modulation characteristics were satisfactorys however. The envelope for 90% amplitude modulation is shown in Figure.. 14.8. The modulator in this type of amplifier is quite broadbanded, and works as well at 10 kHz as at 1 kHz . The spectrum of the pulse waveform for $10 \mathrm{kHz} 90 \%$ modulation is shown in Figure 14.9. The concentration of spurious products near the third and fifth harmonics of the carrier can be observed. Assuming that the sidebands are 6 dB below the carrier, the level of the strongest $I M D$ product outside of the desired bandwidth is approximately -27 dB from the sidebands. Rapid decay of TMD and presence of small even harmonics (due to pulse assymetry) can also be observed. Figure 14.10 shows the inclusion of even harmonics when monopolar PWM is used.

It should be remembered that the purpose of this prototype was to illustrate qualitatively the metiod of class D RF amplificiation (or generation). It is neither exemplary of efficiencies that are possible, nor of linearity which is possible. Presumably; with more time, better components, and especially better test equipment, a much better model could be built.

Figure 14.7. Pulse Train and Output Waveform.

Figure 14.8. Envelope.

Figure 14.9. Spectrum of Bipolar PWM.

Figure 14.10. Spectrum of Monopolar PWM.
XV. APPENDIX III: SIMULATION

Digital computer simulations of classes $B, A D, B D$, and D-RF amplifiers were performed. To minimize programming effort; the programs were constructed in several subroutines, several of which were common to each program. The main program; of which only the version for the class D RF amplifier is included (there are only minor changes in the others), serves the functions of reading parameters; writing some information not written by the subroutines, and calling subroutines in the appropriate order. Only a small amount of trivial computation is done in the main program. Subroutine GRAPH refers to the simplotter at the ISU compution center, which provides a quick graph of the data.

In order to avoid the use of numerical integration, Which is either very expensive or inaccurate, all waveforms are defined on the interval

$$
\begin{equation*}
0 \leq \theta \leq 2 \pi \tag{15.1}
\end{equation*}
$$

Since there is no memory in the amplifiers, products generated must be harmonics of this basic frequency. For this reason, carrier and switching frequencies are specified as integers. A11. programs and subroutines were designed for use with the WATFIV compiler.

The first subroutine called is WAVNRM. This is used primarily for adjusting the peak of a given waveform so that overmodulation does not occur. This is achieved by generating
the waveform $x_{u}(\theta)$ and accumulating the maximum value. The original unnomalized Fourier coefficients (AXUø, AXU(N), BXU (N)) are then multiplied by a constant to produce the normalIized coefficients ($A X \varnothing, A X(N), B X(N)$). A second function of WAVNRM is to procuce Fourier coefficients of the in-phase and quadrature modalating functions $x_{p}(\theta)$ and $x_{q}(\theta)$, which are used for SSB maveforms.

The second subroutine, WAVGEN, furnished values of the modulated signal

$$
\begin{equation*}
v(\theta)=E(\theta) \sin \left[f_{C} \theta \div \omega(\theta)\right]+q \tag{15.2}
\end{equation*}
$$

as well as $E(S)$ and $\varphi(\theta)$, when furnished with a value of θ. It is not called by the main program, but is called by the amplifier subrourine as needed.

Each amplifier subroutine determines an array of pulse transition times (PSI), and associated arrays for waveform type (MOIE) and amplitude (WPI). The maximum number of transitions, PMAX, is also specified. The different MODEs which are possible are:

$$
\begin{aligned}
& \text { MODE }=0 \text {, used to skip calculations for that interval, } \\
& \text { MODE }=1 \text {, used for linear amplification, } \\
& \text { MODE }=2 \text {, used for a constant value on the interval, } \\
& \text { MODE }=3 \text {, used for linear rise (or fall), and } \\
& M O D E=4 \text {, used for exponential rise or fall. }
\end{aligned}
$$

A diagramatic description of these is given in Figure 15.1. Subroutine PLSDST elongates or shorten pulses (MODE = 2),

Figure 15.1. Arrays Used in Simulation.
and adds rise or fall times to them. Either linear or exponential characteristics can be used by changing the value of MODERF. The distorted waveform is specified by arrays PSID, MODED, WPID, AND WP2D. The additional parameter, WP2D(N) indicates the nature of a rise or fall (WF2D $=1$ for rise from 0 to 1 , $=2$ for fall from 1 to 0 , etc.). A "null version" of PLSDST is used when no distortion is to be introduced. Basically it copies the undistorted arrays into the distorted arrays, but it has the additional feature of changing MODE to 0 (skip) when WPl (amplitude) is zero; this results in a saving in time computing the Fourier coefficients. The constants ζ and γ_{i} used in the exponential rise/fall are defined in Figure 15.2.

Fourier coefficients are computeã by subroutine FTRANS. For each transition, FTRANS goes to the appropriate point in the program and calculates up to 200 coefficients. Programing

Figure 15.2. Exponential Mode.
simplicity was obtained by the use of functions CINT, SINT, RCINT, RSINT, ECINT, and ESINT, which perform operations such as

$$
\begin{equation*}
\operatorname{RCINT}\left(m, \psi_{1}, \psi_{2}\right)=\int_{\psi_{1}}^{\psi_{2}} r(\theta) \cos m \theta d \theta \tag{15.3}
\end{equation*}
$$

Upon completion of calculations, FTRANS prints out a table of the coefificients. $A W(N)$ and $B W(N)$ correspond to the cosinusoidal and sinusoidal fourier coefficients $a_{w n}$ and $b_{w n}$, respectively. $C W(N)$ and $C S Q W(N)$ correspond to absolute voltage and power coefficients, defined by

$$
\begin{equation*}
\operatorname{CSQW}(N)=c_{W n}^{2}=a_{w n}^{2}+b_{w n}^{2} \tag{15.4}
\end{equation*}
$$

Subroutine CLDAMP determines pulse transitions for a class D RF amplifier with double sideband or AM signals. Since the phase of these signals is fixed (excepting shifts of π, which amounts to polarity reversals, one transition must occur in each interval of $2 \pi / 4 f_{C}$. The value of $E(\theta)$ at the
center of the intervai is used as a starting point (Figure 15.3 (a)). The point of intersection with the reference signal is then estimated by using the inverse sine relationship between $E(\theta)$ and $r(\theta)$. Using the new value of θ just determined, a new $E(\theta)$ is determined, and the process is repeated. Seven iterations seems to be sufficient to produce as much accuracy as is possible using single-precision (REAL\&4) numbers. Figure 15.4 shows the spectrum calculated for a pure carrier (square wave). A11 computer exrors are seen to be below 10^{-5}, approximately 110 dE below the carrier.

A second version of CLDAMP was devised for SSB signals. Since the phase of an SSB signal is not fixed, there is no certain interval in wich one and only one transition is guaranteed. The program thus must take many small steps, checking each time whether $x(\theta)$ and $E(\theta)$ have crossed. When a transition is found (Figure 15.3(b)) an iteration procedure is initiated. A "brute-force" technique is employed, whereby the interval in which the transition occurs is halved, the values $E\left(\theta_{2}\right)$ and $r\left(\theta_{2}\right)$ checked at the middle point, and the half of the interval not containing the crossing discarded. Though a crude technique, it avoids some problems with linear interpolation which select a point outside the original interval. Approximately 15 iterations are required to achieve maximum accuracy. This program has two problems, however. When $r(\theta)$ is small, and $E(\theta)$ is also small, it was possible to step over both transitions occurring near $r=0$. This problem was elim-

Figure 15.3. Methods of Iteration.

Figure 15.4. Computer Errors in Square-Wave Spectrum.
inated by reducing the step size when both r and E are small. The second problem is similar, and occurs when r and E are large and nearly tangential. This could be eliminated in the same way, but doing so increases the computation time from 2 seconds to 20. Pulse errors on the order of 10^{-3}. can occur, which cause spectral errors on the order of $5 \cdot 20^{-4}$.

PWMAMP searches for one transistion in every intexval of $2 \pi / 2 E_{S}$, and uses linear interpolation (Figure $15.3(0)$). Approximately 10 iterations are required. Note that no information is required (other than q) to change fron class AD to class BD.

CLBAMP uses small steps, as does the $5 \in \beta$ version of CIDAMP, and can suffei from the proklem of stepping over a small pulse, although this was not enconatered in any of the simulations performed using it. Linear interpolation is used (Figure 15.3(d)), and 5 steps is sufficient.

A listing of the one main program and subroutines folIows:
 $\$ 30 B$

C FOURIER SERIES FOR WIDTH-MJDULATED CLASS D RF AMPLIFIER INTEGER*\& ALC,SB,TYPE,FC,WP2D(400)
DIMENSION $\Delta X U(10), B X U(10), A X(10), B X(10), C X(10), C S Q X(10)$,
1 AXP(101, BXP(10), AXO(10), BXQ(10),
2 PSI(200), MODE(200), WP1(200),WP2(200), AW(200), 2N(200),
3 CW(200), CSQW(200), PSID(400), MODED(400), WPID(400),
4 XLAB(5): YLAB(5), GLAB(5), DATLAB(5), X(200;, Y(200)
COMMON/NPM/ AXUO, AXU, BXU
COMMON/WAVI/ Q, AXO, AXP, BXP, AXQ, BXQ
COMMON/HAV2/ FC. NMAX
COMMON/AMPI/ PSI, MODE, WPI, WPZ
COMMON/AMP2/ FS, TYPE

```-
```

COMMON/FTRI/ MMIN, MMAX, AWO, AW, BW, CW, ESQW
COMMON/DST1/ TAUl,TAU2,TAU3sTAU4,TAU5,TAU6,TAUT,TAUS,
1 ZETA, GAMMA5,GAMMA6,GAMMAT,GAMMA8
COHMON/DST2/ PSID, MODED, WPID, WP2D
$Q=0$. 0
READ (5,11 NMAX, SB, AXUO
DO $10 \quad \mathrm{~N}=\mathrm{I}$, NMAX
2 FORMAT (2C10.4)
$10 \operatorname{READ}(5,2)$ AXU(N),BXU(N)
READ\{5,31 FC. TYPE
READ (5.5) AiC. EMAX
READ (5,6) MEIN, MMAX
READ (5,8) IT \because AAX
READ $(5,8\}$ MODERF
READ (5,9) TAU1,TAU2,TAU3,TAU4
READ(5,9) TAU5,TAUÉTAJ7,TAU8
READ(5,11) ZETA, GAMMA5,GAMMA6,GAMMAT.GAMMAB
READ(5,90) XLAE,YLAB, GLAB,DATLAB
1 FORMATI2I10, G10.4)
3 FORMAT (2I10)
5 FORNAT(I10,G10.4)
6 FORMAT(2I10)
8 FORMAT(I10)

- FORMAT (4G10.4)
1.1 FORMAT(5610.4)
90 FORMAT (20A4)
HRITE(6.20)
20 FORMATI'1', $15 \times$ 'WIDTH MODULATED CLASS D RF AMPLIFIER',
1 / /
IMAX=4*NMAX*FC
CAL.L WAVNRM(ALC,SB, NMAX,IMAX,EMAX)
CALL CLDAMP\{ITMAX. KMAX)
(ALL PLSDST(MODERF, KMAX, KMAXD)
NRITE $(6,32)$
31 FORMAT(' ل', 7X,'PSI',7X,'MODE', 8X,'WP1',15X,'J',5X,

DD $33 \mathrm{~J}=1, \mathrm{KMAX}$
32 FORMAT(1, I $4,2 X, G 10.4,2 X, I 5,3 X, G 10.4,12 X, I 4,2 X, G 10.4$,
1 2X,I5,3X,G10.4,5X,I5)
33 WRITE(6,32) J,PSI(J), MODE(J),WPI(J),J,PSID(J),MODEJ(J),
1 WP1D\{J\}, WP2D(J)
$K M A X P=K M A X+1$
DO $43 \mathrm{~J}=\mathrm{KMAXP}$,
42 FORMAT(49X,I4, $2 \mathrm{X}, \mathrm{G} 10.4,2 \mathrm{X}, \mathrm{I} 5,3 \mathrm{X}, \mathrm{G10.4,5X,I5)}$
43 WRITE(6,42) J,PSID(J), YODED(J),WPID(J),WP2D(J)
CALL FTRANS (KMAXD)

```
    JJ=MMIN-1
    LMAX=MINO(200,MMAX-JJ)
    NPTS=LMAX+1
    XMIN=1.0*MMIN-1.0
    XSIZE=0.1*NPTS
    DO 100 L=1, LMAX
    M=L+JJ
    X(L) =N* 1.0
    Y(L)=-5.0
    IF(CW(L).GT.0.1E-05) Y(L)=ALOG1O(CW(L))
100 CONTINUE
    CALL GRAFH(NPTS,X,Y,13,7,XSIZE,-7.0.10.0,XMIN,7.0,#5.0,
    1 XLAB,YLAB,GLAB,DATLAS}
    STOP; END
    SUBROUTINE WAVNRM(ALC,SR, NMAX,IMAX,EMAX)
    INTEGER*4 ALC, SB
    DIMENSION AXU(10), BXU(10), AXPU(10),BXPU(10),AXQU(10),
    1 BXQU(10), AX(10), BX(10),CX(10),CSQX(10),AXP(10),
    2 BXP(10), AXO(10), BXO(10)
    COMMON/NRM/ AXUO, AXU, EXU
    COMMON/WAVI/ Q, AXO, AXP, EXP, AX2, BXQ
    IF(SB.NE.O) GO TO }
    DO 1. N=1, NMAX
    AXPU(N)=0.0
    BXPU(N)}=0.
    AXQU(N)=AXU(N)
    BXOU(N)=BXU(NK
    1 CONTINUE
9 CONTINUE
    IF((SB.EQ.3).OR.(SB.EQ.4)) GO TO 20
    L=1
    IF(SB.EQ.1) L=-1
    AXUO=0. 5* AXUO
    DO 10 N=1, NMAX
    AXPU(N)=0.5*BXU(N)
    BXPU(N)=-0.5*AXU(N)
    AXQU(N:=0.5*L*AXU(N)
    BXQU(N)=0.5*L*RXU(N)
10 CONTINUE
    GO TO &O
20 CONTINUE
    DO 30 N=1, NMAX
    AXPU(N)=\triangleXU(N)
    BXPU(N)=BXU(N)
    AXQU(N)=0.0
    BXQU(N)=0.0
30 CONTINUE
40 CONTINUE
    RATIO=1.0
```

```
    IF(ALC.EQ.O) GO TO }7
    EUMAX=0.0
    XPUO=AXUO
    XQUO=0.0
    IF(SB.NE.4) GO TO 41
    XPUO=0.0
    XQUO=0.O
4l CONTINUE
    DO 60 I=1, IMAB
    XPU=X`PUO
    XQU=XQUO
    THETA=6.2831852*I/IMAX
    DO 50 N=1, NMAX
    ARG=N*THETA
    COSARG=COS(ARS)
    SINARG=SIN(ARS)
    XPU=XPU+AXPU(U)*COSARG+BXPU(N)*SINARG
    XQU=XQU+AXQU(S)*COSARG+RXQU(N)*SINARG
50 CONTINUE
    EU=SQRT(XPU**2+XQU**2)
    IF(EU.GT.EUMAXX) EUMAX=EU
60 CONTINUE
    RATIO=EMAX/EUQAAX
70 CONTINUE
    IFYSB.EQ.4) GO TO 71
    AXO=AXUO=RATIO
    GO TO 72
71 CONTINUE
    AXO=AXUO
72 CONTINUE
    CSQXO=AXO**2
    CXO=SQRT (CSQXO)
    PX=CSQXO
    DO 80 N=I, NMAX
    AX(N)=AXU(N)=RATIO
    BX(N)=BXU(N)*RATIO
    CSQX(N)=AX(N)**2+BX(N)**2
    CX(N)=SQRT(CSOX(N))
    PX=PX+0.5*CSQ%(N)
    AXP(N)=AXPU(N)*RATID
    BXP(N)=BXPU(G)*RATIO
    AXQ(N)=AXQU(N)*RATIO
    BXQ(N)=BXQU(NG)RATIO
80 CONTINUE
    IF(ALC.EQ.O} HRTTE(6.90)
90 FORMAT(/;' WAVEFORM NOT NORMALIZED.',/I
    IF(ALC.EO.1) WRITE(5,91)IMAX, EMAX
91 FORMAT(/,' WAVEFORM NJRMALIZED WITH ',I4,' POINTS TO',
    1 PPEAK AT',G1O.4,'.',/I
        WRITE (6,92) RATIO, PX
92 FORMATI' NORMALIZATION RATIO = ',G10.4,5X,'PX=*',
```

```
    1 G10.4%/1
    IF(SB.EO.O) WRITE(6,100)
10@ FORMAT(` EASEBAND',/)
    IF(SE.EQ.1) WRITE(6,101)
102 FORMAT(' LOWER SIOEBAND',/)
    IF(SB.EQ.2) WRITE{6.102)
102. FORMAT(* UPPER SIDEBAND',/)
    IF(SB.ED.3) WRITE(6,103)
103 FORMAT(* DOUBLE SIDEBAND',/)
    IF(SR.EQ.4) WRITE{6,104)
104 FORMAT(: AMPLITUDE MODULATIOV',7)
    WRITE{6:110)
110 FORMAT(35X.'FOURIER COEFFICIENTS OF XU AND X',/)
    HRITE(6,120)
120 FORMAT(" N',8X,'AXU(N)',11X,'BXU(N)',11X,'AX(N)',12X,
    1 'BX[N]',12X,'CX(N)',11X,'CSQX(N)',/)
    WRITE{6,130} AXUO, AXO, CXO, CSQXO
135 FORMAT(* O',G17.8.17X,G17.8,17X,2G17.8)
    OO 150 N=1, NMAX
140 FORMAT(* *,I4,6G17.8)
150 WRITE{6:140) N,AXU(N),BXU(N),AX(N),BX(N),CX(N),CSOX(N)
    RETURN: END
    SUBROUTYNE WAVGEN(THETA,V,E,PHI)
    INTEGER*4 FC
    DIMENSITAN AXP(10),BXP(10),AXQ(10),BXO(10)
    COMMON/KAVI/ Q, AXO, \triangleXP, BXP, AXQ, BXQ
    CDMMON/:HAV2/ FC, NMAX
    THETAC=FC:THETA
    XP}=\triangleX
    XQ=0.0
    DC:10 N=1. NMAX
    ARG=N*THETA
    COSARG=COS{ARG!
    SINARG=SIN(ARG)
    XP=XP+AXP(N)*COSARG+BXP(N)*SINARG
    XQ=XQ+AXQ(N)*COSARG+RX2(N)*SINARG
10 C.ONTINUE
    V=XP*SIN(THETAC)+XQ*COS(THETAC)+Q
    E=SQRT (XP**2+XQ**2)
    IF((XP.EQ.O.O).AND.(XQ.EQ.O.O)) GO TO 20
    PHI=ATAN2(XQ,XP)
    GO TO 30
20 CONTINUE
    PHI=0.0
30 CONTINUE
    RETURN; END
```

```
    SURROUTIME CLDAMP(ITMAX, KMAX)
    DSB/AM VERSICN
    INTEGER** FC, TYPE, WP2(200)
    DIMENSICAN PSI(200), MODE(200), HP1(200)
    COMMON/ANPI/ PSI, MODEs WPI, WP2
    COMMON/AMP2/FS. TYPE
    COMmON/V:MV2/ FC, NMAX
    Di=0.7853981/FC
    D2=1.5707963/FC
    JMAX=4*FS-1
    00 40 J=1, JMAX, 2
    THETAO=J*D2
    THETA1=THETAO-D1
    THETA2=THETAO+D1
    DO 2O L=I., ITMAX
    CALL WAVGEN(THETAI,VI,EI,PHII)
    CALL WAVGEN(THETA2,V2,E2,PHI2)
    Yl=ARSIN&EIJ/FC
    Y2=ARSIN(F2)/FC
    THETA1=THETAO-Y1
    THETA2=TH゙ETAO+Y2
20 CONTINUE
    CALL WAVGEN(THETAO,VO,EO,PHIO)
    PSI(J)=T&ETAI
    JP=\ \ 1
    FSI(JP)=r&ETAZ
    WP1(J)= SEN(VO)
    IF((TYPE.EQ.I).AND.(WPI(J).EQ.-1.0)) WPI(J)=0.0
    WPI(JP)=0.0
    MOOE(J)=?
    MODE (JP)=2
40 CONTINUE
    KMAX=JMAK+2
    PSI(KMAX)=PSI(1) + 6.2831852
    WRITE(6,59) FC
59 FORMAT(/:* FC= = , I4,/)
    IF(TYPE.EQ.I) WRITE(6,61)
    IF(TYPE.EQ.2Y WPITE(6,62)
61 FORMAT(' MONGPOLAR PULSE TRAIN',/I
6 2 ~ F O R M A T ( ' ~ E I P C L A R ~ P U L S E ~ T R A I N ' , / ) ~
    WRITE(6,7口! ITMAX
70 FORMAT(: NATURAL SAMPLING USING ',I2,' STEP ITERATION*,/I
    RETURN; END
    SUBROUTINE PLSDST(MDDERF, JMAX, KMAX)
    INTEGER*4. WP2D(400)
    DIMENSION PSI(200), MDDE(200), WPI(200),
1 PSID(400), MODED(400), WP1D(400), WP2(200)
    COM:MON/DSTI/ TAUI,TAU2,TAU3,TAU4,TAU5,TAUG,TAU7,TAU8,
l ZETA,GAMMA5,GAMMAG,GAMMAT,GAMMAS
```

```
    CDMMON/DST2/ PSID,MODED,WPID,WP2D
    COMMON/AMP1/ PSI,MODE,WP1,WP2
    K=1
    JMAXM=JMAX-1
    DO 50 J=1, JMAXM
    JM=J-1
    IF(JM.EQ.O) JM = JMAXM
    JP=j+1
    KM=k-1
    KP=K+1
    IF(WP1(JM).EQ.WPI(J)) GO T0 49
    IF({WP1(JM).EQ. 0.0).AND.(WP1(J).ES. 1.0)) GO TD 10
    IF((WPI(JM).EQ. 1.O).AND.(WPI(J).EQ. 0.0)) GO TO 20
    EF((WP1(JM).EQ. O.0).AVD.(WPL(J).EQ.-1.0)) GO TJ 30
    IF((WPI(JM).EQ.-I.O).AND.(NPI(J).EQ. 0.0)) GO TO 40
    PSID(K)=PSI(J)
    MODED(K)=MODE(J)
    WP1D(K)=WPI(J)
    WP2D(K)=0
    GO TO 4.9
10 CONTINUE
    PSID[K)=PSI(J)-TAUI
    MODED(K)=MODERF
    WP2D(K)=1
    PSID(KP)=AMIN1(PSI(JP),PSID(K)+TAU5)
    HODED(KP)=2
    WP1D(KP)=1.0
    K=K+2
    GO TO-40
20 CONTINUE
    PSID(K)=AMIN1(PSI(J)+TAU2,PSI(JP))
    MODED(K)=MODERF
    WP2D(K)=2
    PSID(KP)=PSID(K)+TAU6
    MODED{KF:=0
    WPID(KP)=0.0
    K=K+2
    GO TO 4O
30 CONTINUE
    PSID(K)=PSI(J)-TAU3
    MODED(K)=MODERF
    WD2D(K)=3
    PSID(KP)=AMINI(PSI(JP),PSID(K)+TAUT)
    MODED(KP)=2
    WP1D(KP)=-1.0
    K=K+2
    GO TO 49
40 CONTINUE
    PSID(K)=AMINI(PSI(J)+TAU4, PSI(JP))
    MODED(K)=MODERF
    WP 2D(K)=4
```

```
    PSID(KP)=PSID(K)+TAU8
    MODED(KP)=0
    WP1D(KP)=0.0
    K=k+2
4 9 \text { CONTINUE}
5 0 ~ C O N T I N U E ~
    KMAX=K
    PSID(KMAX)=PSID(1)+5.2831852
    WRITE(6,60)TAU1,TAU2,TAU3,TAU4,TAU5,TAUS,TAU7,TAUQ
60 FORMAT(/,' PULSE DISTJRTION PARAMETERS:':/:6X,
    1 BIAS : TAUL = ',G11.4,' TAUZ = ',G11.4,
    2 'TAU3 = ',G11.4,' TAU4 = ',G11.4,/,6X,'RISE/FALL:',
    3. TAUS = %,G11.4,' TAUS = ',G11.4,' TAJ7 = ',
    4 G11.4,' TAUS = ',G11.4./1
    IF(MODERF.EQ.3) WRITE(6,63)
63 FORMAT(' LINEAR RISE/FALL SHAPE USED',/I
    IF(MODERF.EO.4) WRITE(5:64) ZETA,GAMMA5,GAYMAS,
    1 GAMMAT, GAM\AB
64 FORMATI' EXPONENTIAL RISE/FALL CHARACTERISTIC USED:',
    1 ' ZETA = ',G12.4.1,6X,'GAMMA5 = ',G12.4,' GAMMA5 = ',
    2 Gl2.4,' GAMMAT = ',312.4,' GAMMAB = ',G12.4.11
    RETURN; END
    SUBROUTINE FTRANS(KMAXI
    INTEGEK:4 WPZ(400), FE
    DIMENSIDN AW(200), BW(200),こW(200),CSQW(200),
    1 AXP(10), BXP(10), AX\(10), BXO(10),
    2 AV:(10), BVM(10), AVP(10), SYP(10),
    3 PSI(400), MONE(400), NP1(400)
    COMMON/VAVI/ B, AXO, AXP, BXP, AXQ, BX2
    COMMON/DST2/ PSI, MDDE, WPI. WP2
    COMMON/FTRI/ MMIN, MMAX, AWO, AW, BW, CN, こSQN
    COMMON/WAVZ/ FC, NMAX
    COMMONIDST1; TAUL,TAUZ,TAUS,TAU4,TAU5,TAUG,TAUT,TAUR.
    1 ZETA,GAMMA5,GAMMAG,GAMMAT,GAMMAS
    J=MMIN-1
    LMAX=MINO(200,MMAX-J)
    AWO=0.0
    DO 1 : =1, LMAX
    \DeltaW(L)=0.0
    BW(L)=0.0
1 CONTINUE
    AVO=0.0
    BVO=AXO
    DO 2 N=1, NMAX
    AVM(N)=0.5*(RXP(N)+\triangleXQ(N))
    AVM(N)=0.5*{AXP{M;-SX2(N)}
    AVP(N)=0.5*(-GXP(N)+AX2(N))
    BVP(N)=0.5*{AXPiN;-BXQ(N))
2 CONTINUE
```

```
    KMAKM=KM&K-1
    DO 90 K=F, KMAXM
    KP=K+1
    IF{NODE(K).EQ.O) GO TO 80
    IF(MUDE{K3.EQ.1) GO TO 10
    LF(MODE(K).EQ.2) GO TO 20
    IF(MMDE(K).EQ.S) GO TJ 30
    IF{MODE{K).EQ.4} GO TO 40
    WRITE(6,E} K,MODE(K),PSI(K),PSI(KP)
5 FORMAT(' 子** MODE\',I3,') = ',I2,' USED FJR ',S10.4,
    1 ' < PSI< <,GIO.4,' IS NOT DEFINED.***',/)
        GO TO 100
10 CONTINUE
    AWO=AWO+\cap*{PSI(KP)-PSI{K))&AVO*CINT(FC,PSI(K),PSI(KP))
    1 +BVO*SENT(FC +PSI(K),PSI(KP))
    DO 11 N=1, NMAX
    AWO=AHO+{AVM(N)*CINT(FC -N,PSI(K),PSI(KP))
    1 % BVM(N)*SINT( FC -N,PSI(K),PSI(KP))
    2 +AVP(N)*CINT(FC +N,PSI(K),PSI(KP))
    3 +FVP(N)*SINT(FC +N,PSI(K),PSI(KP)|)*WPI(K)
11 CONTINUE
    DO 13 L=E, LMAX
    M=L+J
    AW(L)=AW{L)+Q*CINT(M:PSI(K),PSI(KP))+0.5*WP1(<)*
    1 (AVO*(CINT(FC+M,PSI(<),PSI(KP))+CINT(FS-M,PSI(<),
    2 PSI(KP:II+BYO*(SINT(EC+MFPSI(K),PSI(KP)!
    3 +SINT(FC-M,PSI(K),PSI(KP)))I
    BW(L)=BU(L)+Q*SINT(M,PSI(K),PSI(KP))+0.5*WP1(<)*
    1 {AVO*(SINT(FC+M,PSI(S),PSI(KP!)+SINT(Fこ-Y,PSI(K),
    2 PSI(KP))}+\mathrm{ +VVO*(-CINT(FC+M,PSI(K),PSI(KD))+CINT(FZ-4,.
    3 PSI(K)&PSI(KP)|!)
    DO 12 N=1, NMAX
    CINTMM=CINT( FC -N-M,PSI(K),DSI(KP))
    CINTMP=CIMT( FC -N+M,PSI(K),PSI(KD))
    CINTPM=CIMT(FC +N-M,PSI(K),PSI{KPI:
    CINTPP=CNN( FC +N+M,PSI(K),PSI(KP))
    SINTMM=SINT( FC -N-M,PSI(K),PSI(KP))
    SINTMP=SINT( FC -N+M,PSI(K),PSI(KP))
    SINTPM=SINT( FC +N-M,DSI(K),PSI(KP))
    SINTPP=SINT( FC. +N+M,PSI(K),PSI(KP))
    AW(L)=AW(L)+0.5*(AVM(N)*(CIVTMP+CINTMM)+
    1 BVM(N)*(SINTMP +SINTMM) +
    2 AVP(N)*(CINTPP+CINTPM)+
    3 BVP(V)*(SIVTPPP+SIVTPM))*WPI(<)
    BW(L)=BW{L)+0.5*(AVM(N}*(SINTMP-SINTMM) +
    l
    3 BVP(N)*(-CINTPP+CINTPM))*WPI(K)
```

12 CONTINUE
13 CONTINUE
GO TO 80

```
20 CONTINUE
    AWO=AWO+WPI(K)*(PSI(KP)-PSI(K))
    DO 21 L=1, LMAX
    M=L+J
    AW(L)=AW(L)+WPI(K)*CINT(M,PSI(K),PSI(KP))
    BW(L)=BW(L)+WPI(K)*SIVT(M,PSI(K),PSI(<P))
21 CONTINUE
    GO TO 80
30 CONTINUE
    IF(WP2(K).EQ.1) GO TO 31
    IF(WP2(K).EQ.2) GO TO 32
    IF(WP2(K).EQ.3) GO TO 33
    IF(WP2(K).EO.4) GO rO 34
31 continue
    TAU=TAU5
    C=0.0
    GO TO 35
32 CONTINUE
    TAU=-TAUS
    C=1.0
    GO TO 35
33 CONTINUE
    TAU=-TAUT
    C=0.O
    GO TO }3
34 CONTINUE
    TAU=TAU8
    C=-1.0
    35 CONTINUE
        IF((TAU.EQ.O.0).OR.(PSI(K).EQ.PSI(KP))) GO TJ 39
        AWO=AWO + RCINT(O, PSI(K),PSI(KP))/TAU+(C-PSI(K)/TAJ)
    1 * CINT(O, PSI(K), PSI(KP))
        DO 36 L=1, LMAX
        M=L+J
        AW{L)=AW{L) & RCINT(M, PSI(K), PSI(KP)|/TOU
    1 +(C - PSI(K)/TAS)*CINT(M, PSI(K), PSI(<P))
        BW(L)=BW(L) + RSINT(M, PSI(K). PSI(KP))/TAU
    1 +(C - PSI(K)/TAU):NSIVT(Y, DSI(K), PSI(KP))
36 CONTINUE
39 CONTINUE
    GO TO 80
4 0 ~ C O N T I N ! J F
    IF(WP2(K).EQ.1) GO TO 41
    IF(WP2(K).EQ.2) GO TO 42
    IF(WP2(K).EQ.3) GO TO 43
    IF(WP2(K).EQ.41 GO TO 44
    GO TO 49
41 CONTINUE
    Cl=+ZETA
    C2=-ZETA
    TAU=TAUS
```

```
    GAMMA=GAMMA5
    GO TO 45
    42 CONTINUE
    C1=+1.0-ZETA
    C2=+ZETA
    TAU=TAUG
    GAMMA=GAMMAG
    GO TC 45
43 CONTINUE
    Cl=-ZETA
    C2=+ZETA
    TAU=TAUT
    GAMMA=GAMMAT
    GO TO 45
44 CONTINUE
    C1=-1.0+2ETA
    C2=-ZETA
    TAU=TAU8
    GAMMA=GAMMAB
45 CONTINUE
    DELTA=PSI(KP)-PSI(K)
    EXPPSI=EXP(GAMMA*PSI(K))
    IF((TAU.EQ.O.O).OR.(DELTA.EQ.O.0)) GO TO 49
    AWO=AWO +C1%CINT(O, PSI(K), PSI(KP))
    1 +C2*ECINT{O,-GAMMA,PSI(K),PSI(KP))*EXPPSI
    OंO 4. L=1, &MA.X
    M=L+J
        AW(L)=AW(L)+CI*CINT(M,PSI(K),PSI(KP))
    1 +C2*ECINT(M,-GAMMA,PSI(K),PSI(KP))*EXPPSI
    BW(L)=BW(L)+C1*SINT(H,PSI(K),PSI(KD))
    1 +C2*ESINT(M,-GAMMA,PSI(K),PSI(KP))*EXPPSI
46 CONTINUE
4 9 ~ C O N T I N U E ~
8O CONTINUE
90 CONTINUE
    AWO=AWO/6.2831852
    CHO=ABS(ANO)
    CSQWO=AWO**?
    DO 92 L=1, LMAX
    AW(L)=AW(L)/3.1415926
    BW(L)=BW(L)/3.1415926
    CSQW(L)=AW(L.)**2+BW(L)**2
    CW(L)=SQRT(CSOW(L))
O2 CONTINUE
    WRITE(6,93)
93 FORMAT(//,25X,'FOURIER COEFFICIENTS OF W',/I
    WRITE(8,94)
94 FORMAT(' M',10X,'AW(Y)',12X,'SN(M)',12X,'CN(M)',
    1 12X,'CSQW(M)',/1
    WRITE(6,Y5) AWO,CWO,CS2WO
95 FORMAT(' O',G17.8,17X,2G17.8)
```

```
    DO 97 L=1, LMAX
    M=L+J
96 FORMAT(: ',I4,4G17.8)
97 WRITE{\epsilon,96)M, AW(L),BW(L),CW(L),CSQW(L)
100 CONTINUE
    RETURN; END
    FUNCTION SGN(V)
    SGN=0.00000000
    IF(V.GT.0.00000000) SGN=+1.0
    IF(V.LT.0.00000000) SGN=-1.0
    RETURN; END
    FUNCTION CINTIM,PSI1,PSI2)
    CINT=0.0
    IF(PSII.EQ.PSI2) GO TO 10
    IF(M.EQ.O) CINT=PSI2-FSII
    IF(M.NE.O: CINT=(SIN(M*PSI2)-SIN(Y*PSII))/M
10 CONTJNUF
    RETURN; END
    FUNCTION SINT(M, PSI1, PSI2)
    SINT=0.0
    IF(PSIL.EQ.PSI2) GO TO 10
    IF(M.NE.O) SINT=(-COS(Y*PSI2)+COS(M*PSI1))/M
10 CONTINUE
    RETURN; END
    FUNCTION RCINT(M, PSIL, PSI2)
    IF(M.NE.O) GO TO 10
    RCINT=(PSI2**2-PSI1**2)/2
    GO TO 20
10 CONTINUE
    ARG1=M*PSII
    ARG2=M*PSI2
    RCINT={(OS(ARG2)-r.OS(A2G1)+\triangleRG2*SIN(ARG2)
    1 -ARGI*SIN(ARG1|)/M**2
20 CONTINUE
    RETURN; END
    FUNCTION RSINT(M, PSI1, PSI2)
    RSINT=0.O
    IF(M.EQ.O) GO TO 10
    ARG1=M*PSII
    ARG2=M*PSI2
    RSINT=(SIN(ARG2)-SIN(ARG1)-ARG2*COS(ARG2)
```

```
    - 1 +ARG1*COS(ARG1)//M**2
        10 CONTINUE
        RETURN; END
        FUNCTION ECINT(M,P,PSII,PSIZ)
        D=M**2+P**2
        IF(D.NE.O.O).GO TO 10
        ECINT=PSI2-PSII
        GD TO 20
    10 CONTINUE
        ARG1=M*FSII
        ARG2=M*PSI2
        ECINT=(EXP(P*PSI2)*(P*COS(ARG2) +M*SIV(ARG2))
    1-EXP(P*PSIl)*(P*COS(ARG1)+M*SIN(ARS1)))/D
    20 CONTINUE
    RETURN: END
    FUNCTION FSINT(M,P,PSIL,PSI2)
    D=M**2+P**2
    IF(D.NE.O.O) GO TO 10
    ESINT=0.0
    go TO. 20
    10 CONTINUE
        ARG1=M*PST1
        ARG2=M*RSI2
        ESINT=(EXP(P*PSI2)*(P*SIN(ARG2)-M*COS(ARG2))
    1 - EXP(P*PSII)*(P*SIN(ARG1)-M*COS(ARG1)))/D
    20 CONTINUE
    RETURN; ENN
$ENTRY
C OTHER SUBROUTINES
    SUBROUTINE PLSOST(MODERF,KMAX,KMAXD)
_ NULL VERSION
    INTEGER*4 WP2D(400)
    DIMENSION PSI(200), MOOE(200), WP1(200), NP2(200),
    1 PSID(400), MCDED(400), WP1O(400)
    COMMCN/AMP1/ PSI, :MODE, WP1, WP2
    COMMON/DST2/ PSID, MODED, WP1O, WP2I
    KMAXD=KMAX
    KMAXM=KMAX-1
    DO 10 K=1, KMAX
    PSID(K)=PSI(K)
    10 CONTINUE
```

```
        DO 20 K=1, KMAXM
        MODED(K)=MODE(K)
        HP1O(K)=WP1(K)
        IF(WPI(K).EQ.O.O) MODED(K)=0
        20 CONTINUE
    RETURN; END
    SUBRRUTINE CLDAMP(ITMAX, KMAX)
C SSB VERSIDN
C ERRORS IN PULSE WIDTH MAY DCCUR WHEN E IS NEAR l.O.
    INTEGER*4 FC, TYPE, HP2(200)
    DIMENSICN PSI(200), MODE(200), WP1(200)
    COMMCN/\triangleMPI/ PSI, MODE, WP1, WP2
    COMMON/AMP2/ FS, TYPE
    COMMON/WAV2/ FC, NMAX
    THETAI=0.0
    CALL WAVGEN{THETA1,YI&El,PHII)
    PI=ABS(COS(FC*THETA1+PHII))
    W1=0.0
    IF(E1.GE.OI) WI=SGN(VI)
    J=1
    RMIN=6.2831852/50
    DELTA=RMIN/FC
5 CONTINUE
    D=DELTA
    IF(R1.LT.RMIN) D=AMAX1(0.8*R1/FC, 0.529E-05)
    THETA4=THETA1+N
    IF(J.EQ.1) GO TO &
    IF(J.GT.2) GO TO b
    THETAM=PSI(1)+6.283185
6 CONTINUF
    IF(THETA4.LT.THETAM) 30 TO 7
    THETA4=THETAM
    GO TD 40
7 CONTINUE
8- CONTINUE
    CALL WAVGEN(THETA4,V4,E4,PHI4)
    R4=ABS(COS(FC%THETA4+PHI4*)
    W4=0.0
    IF(EL.SE.R4) W4=SGN(V4)
    IF(W4.EQ.WII GO TO 30
    THETA3=THETA4
    W3=W4
    E3=E4
    V3=V/4
    PHI3=PHI4
    R3=R4
    DO 20 L=1, ITMAX
    DIFF=THETA3-THETA1
    IFIDIFF.LT.O.1E-05) GJ TD 21
```

THETA2 $=0.5 *(T H E T A 1+T H E T A 3)$
CALL WAVGEN(THETA2,V2,E2,PHI2)
R2 $=\triangle B S(C O S(F C \div T H E T A 2+P H I 2))$
$W 2=0.0$
IF(E2.GE.R2) W2=SGN(V2)
IF (WI。EO.W2) GO TO 10
THETA3 = THETA2
$W 3=W 2$
R $3=R 2$
$E 3=E 2$
V3 $=V_{2}$
GO TO 11
10 CONTINUE
THETA1 = THETA 2
RI $=$ R 2
$W I=W 2$
$E 1=F 2$
V1 $=$ V2
11 CONTINUE
20 CONTINUE
21 CONTINUE
PSI $(J)=$ THETAZ
MODE $(J)=2$
WPI (J) $=W 4$
IF(\{TYPE.EQ.1).AND. (WP1 (J).EQ.-1.0)) WPI(J)=0.0
$J=J+1$.
THETA4 $=$ THETA4 $+0.628319 E-05$
CALL WAVGEN(THETA4, V4,E4,PHI4)
R4 = ABS (COS (FC*THETA4+PHI4))
$W 4=0.0$
IF(E4.GE.R4) W4xSGN(V4)
$J M=J-1$
IF((WP) (JM).NE.O.O).AND. (W4.EQ.O.O)) GO TO 25
GO TO 29
25 CONTINUE
PSI(J)=THETA4
MODE $(J)=2$
WP $1(J)=W 4$
IF((TYPE.EQ.1).AND.(WDI(J).EQ.-1. D)) WP1(J)=0.0 $J=J+1$
29 CONT INUE
30 CONTINUE
THETAI = THETA 4
$E 1=E .4$
$W 1=W 4$
R1=R4
GO TO 5
40 CONTINUE
$K M A X=J$
PSI (KMAX) $=$ THETAM
WRITE (6.59) FC

```
59 FORMAT(/,' FC = ',I4,/)
    IF(TYPE.EQ.1) URITE(6,61)
    IF(TYPE.EQ.2) WRITE (6,62)
61 FORMAT(: MONOPELAR PULSE TRAIN',/I
6 2 ~ F O R M A T ( " ~ B I P O L G R ~ P U L S E ~ T R A I N : , / 1 ~
    WRITE{6,7O1 ITMAX
70 FORMATI; NATURAL SAMPLING USING ',I2,
    1 (STEP ITERATION',/)
    RETURN: END
    SURROUTINE PWMEMP(ITMAX,KMAX,PHIO,O)
    INTEGER#4 SAMP&E, FC, FS, TYPE
    DIMENSION PSI(200), MODE(200), WP1(200):WP2(200)
    COMMON/MAVZ/ FC, NMAX
    COMMON/AMP1/ PSI, MODE, WP1, WP2
    CDMMON/MMPZ/ FS, TYPE
    TYPE=1
    KMAX=2*=5+1
    KMAXM=KMAX-1
    D=1.5707963/FS
    THETA1=PHIO/FS
    Rl=1.0
    GALL WAYGEN(THETAl,Vl,El,PHII)
    V1=ABS(`゚1)
    OO 30 K=1; KM, YMM
    THETA4=THETA1+2*D
    CALL WAVGEN(THETA4,V4,E4,PHI4)
    S4=SGN(W4)
    V4=ABS(\4)
    R4=0.0
    IF(R1.EO.0.0) E:4=1.0
    THETA3=THETA4
    V3=V4
    R3=R4
    DO 10 L=1, ITMA.X
    DNM=R3-R1+VI-V3
    IF(ABS(CNM).GT.(0.1E-09)) GO TO 1
    THETA2 = THETA3
    R2=R3
    GO TO 11
1 CONTINUE
    THETA2=THETA1+(V1-RI)*(THETA3-THETA1//DNM
    CALL WAVGEN(THETAZ,V2,E2,PHI2)
    V2=ABS(V2)
    R2=R3
    IF:ABS(TMETA3-THETA1).LT.O.1F-09) 30 TD ll
    R2=R1+(P.3-R1)*(THETA2-THETA1)/(THETA3-THETA1)
    IF(V2.GT.R2) SO TO 2
    -THETA3=THETA?
    R3=R2
```

```
    V3= v2
    GO TO 3
    2 CONTINUE
        THETA1=THETA2
        R1=R2
        V1=v2
    3 CONTINUE
10 CONTINUE
11 CONTINUE
    PSI(K)=THETA2
    MODE(K)=2
    WPI(K)=1.0
    IF(K/2*2.EQ.K) WPI(K)=0.0
    IF(WP1(K)。EQ.1.0) WP1(<)'=S4
    IF{VEI(K).EQ.-1.0} TYPE=2
    PSI(KM\DeltaX)=6.2831.852
    THETAI=THETA.4
    RI=R4
    VI=V4
30 CONTINUE
    IF(TYFE.EQ.1.) WRITE(6,31)
    IF(TYPE.EQ.2) WPITEI6,32)
31 FOPMAT(/,' CLASS AD AMPLIFIER'I
32 FOPMAT(/,' CLASS BD AMPLIFIER')
    WRITE(6,40) FC, FS, Q, PHIO
```



```
    1 'PHIO = ',512.4,/1
        WRITF(6,53) ITMAX
53 FOPMAT{' NATURAL SAMPLING EY ',IZ,' STEP ITERATITV',/I
    RETURN: ENO
    SUBRDUTINE CLGAMP(ITMAX, JMAY)
    INTEGER*4 FC
    DIMENSION PSİ200i, MOOEi200;, WPii200i, wP2i200i,
    1 AXF(10), BXP(10), AXQ(10), BXQ(10)
    COMMON/HAV1/ Q. AXO, AXP, BXF, AXQ, BXQ
    COMMON/:UAV 2/ FC, NMAX
    COMMON/AMP1/ PSI, MODE, WP1, WP2
    IMAX=FC*NMAX*10
    THETAI=0.0
    J=1
    CALL WAVGEN(THETA1, V1, E, PHI)
    DO 50 I=1. IMAX
    THETA4=6.2831852*I/IMAX
    CALL HAVGEN(THETA4, V4, E, PHI)
    IF((\V1.GT.1.0).AND.(V4.GT.1.0)).JR.((V1.LT.O.O).AV).
    1 (V4.LT.0.0)).OR.((V1.LT.I.O).AND.(V1.GT.0.0).
    2 AND.(H4.LT.1.01.AND.(V4.GT.O.01)) GO TO 40
    THETA2=THETA4
    V2=V4
```

```
    P=1.0
    IF((V1.LE.0.0).AND.(V2.GE.0.0)) P=0.0
    IF((V2.IE.0.0).AND.(V1.GE.0.0)) P=0.0
    PSI(J)=(P-V1)*(THETA2-THETA1)/(V2-V1)+THETA1
    DO 30 IT=1, ITMAX
    CALL WAVGEN(PSI(J),V3,E,PHI;
    IF(V3.GT.P) GO TO 10
    V1=V3
    THETAI=PSI(J)
    GO TO 20
10 CONTINUE
    V2=V3
    THETA2=PSI(J)
20 CONTINUE
    IF(ABS(V2-VI).LT.(0.1E-09)) GO TO 31
    IF(ABS(THETA2-THETA1).LT.(0.1E-09)) GO TO 31
    PSI(J)=(P-V1)*(THETA2-THETA1)/(V2-V1) +THETA1
30 CONTINUE
31 CONTINUE
    MODE (J)=1
    WP1(J)=1.0
    IF((V4.LT.1.0).AND.(V4.GT.0.0)) GO TO 39
    MODE(J)=2
    IF(V4.LF.0.0) WP1\J)=0.0
39 CONTINUE
    j= l+ ]
40 CONTINUE
    THETAI = THETA4
    VI=V4
50 CONTINUE
    JMAX=J
    PSI(JMAX)=PSI(1)+6.2831853
    WRITE(6,60) FC, Q
60 FORMAT(//,''FC=1,I3,5X,"Q = % G10.4,/)
    RETURN; END
```

XVI. APPENDIX IV: COMMONLY-USED SYMBOIS ,
The following symbols are used consistantly throughout this dissertation. Jfisting is alphabetically by Roman and then Greek letters.
$a_{x n} \quad n^{\text {th }}$ cosine Fourjer coefficient of wave x
A Ampere
b magnitude of $\sin \theta$
$b_{x n} \quad n^{\text {th }}$ sine Fourier coefficient of wave x
$c_{x n} \quad n^{\text {th }}$ magnitude Fourier coefficient of wave x
$c(\theta) \quad$ cosinusoidal switching function
$c_{i} \quad$ constant used in feedback analysis
$\overline{\mathrm{C}} \quad$ matrix of c_{i}
$d c_{i} \quad$ increment of c_{i}
$d \bar{c} \quad$ vector of $d c_{i}$
e $\quad \approx 2.718 .$.
$E(\theta)$ envelope function
f frequency
$f_{c} \quad$ carrier frequency
$f_{s} \quad$ switching frequency
$f_{x} \quad$ modulation frequency
$f_{+}(\theta) \quad$ monopolar pulse train
$f_{ \pm}(\theta) \quad$ bipolar pulse train

F	Farad
$F(\omega)$	filter
$\mathrm{F}_{0}(\omega)$	output fulter
$F_{d}(\omega)$	detector filter
$g(\sigma)$	saturation function
G	gain
H	Henry
i, j, k, m, n	indices
i	current
k	kilo
m	milli
n	nano
0	output
$p(y ; 0)$	distortion function
P_{0}	output power
P_{i}	input power
P_{DR}	power dissipated due to rise/fall times
P_{DS}	power due to saturation voltage
q	quiescent voltage or current
$r(\theta ; \lambda, \tau)$	ramp waveform
$s(\theta)$	sinusoidal switching function
S	seconds
t	time
$\cdot \mathrm{u}(\theta)$	distortion waveform

$v(\theta)$	output or modulated waveform
v_{0}	output voltage. .
v_{s}	saturation voltage
V	Volt.
$\mathrm{w}(\theta)$	pulse waveform
$W_{D}(\theta)$	distorted pulse waveform
$x(\theta)$	modulating waveform
$x_{p}(\theta)$	modulation of $\sin \omega_{c} t$
$\mathrm{x}_{\mathrm{q}}(\theta)$	modulation of $\cos \omega_{c}{ }^{t}$
$X(6)$	spectrum of $x(\theta)$
$y(\theta)$	pulse (half) width
Y	integrated distortion function
$z_{k}(\theta)$.	modulation of $\mathrm{k}^{\text {th }}$ harmonic of f_{c} or f_{s}
α	ratio of carrier to modulation frequencies
β	ratio of switching to carrier frequencies
γ	exponential rise/fall time exponent constant
δ	small change
5	exponential rise/fall time amplitude constant
η	efficiency
η_{i}	sum of several coefficients in frequency expansion
θ	normalized time (in terms of 2π)
λ	ramp location parameter
μ	micro
Ξ	coefficient matrix in feedback problem

$\approx 3.14159 \ldots$

TT
prociuct
σ sum of pulse error
Σ
τ_{i}
\boldsymbol{T}_{i}
$\rho(\theta)$
${ }^{C O}$
ψ
ψ_{j}
ω
Ω
sum
pulse bias error if $1 \leq i \leq 4$
pulse rise/fall error if $5 \leq i \leq 8$
phase shift function
phase of conventional PWM pulse train
$\omega_{c} t+\varphi$
puise transition time
angular frequency
Ohm

